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Chapter 0

Preface

0.1 About these notes

These course notes cover classical and quantum statistical mechanics, and were written
for PHYS6327 at the University of Houston. In principle, all of this material will be fully
covered during the one-semester course. In practice, we’ll skip a few sections in these
notes.

These course notes are under constant development. As such, while I will make every effort
to have complete course notes posted to blackboard before class, they may be updated
without notice at any time. If you find a typo in the document, please let me know (and
apologies if it leads to confusion). I ask that you not post these notes online, since they
are still a rough draft.

0.2 What is statistical physics?

Classical physics, quantum mechanics, and general relativity cover a wide range of physi-
cal processes and describe the interactions between particles in a huge number of contexts.
The beauty of these physical laws is that they are often exactly solvable, and the ex-
act solutions have been shown to agree with experimental results to a remarkable extent.
Newtonian mechanics landed rovers on mars, Maxwells equations underly many aspects
of modern communication, the prediction of quantum mechanics agrees with experiments
to a precision better than 10−10, and general relativity’s prediction of gravitational waves
has just recently been confirmed. Centuries of co-development of experimental and theo-
retical techniques has led to a remarkable body of knowledge about how the works on a
fundamental level.
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CHAPTER 0. PREFACE 2

Statistical physics deals not with understanding the fundamental dynamics or interactions
between particles as the other branches of physics do, but rather tries to understand the
behavior of a large number of particles. A really large number of particles, on the order
of 1023. This is a ridiculously large number, and an exact calculation becomes infeasible
in virtually all theories. Even if one were able to solve a many body problem exactly
(notoriously difficult for nontrivial interactions) for a more than two particles, would perfect
knowledge of the exact properties of 1023 particles be useful? How does one organize the
information about the state of 1023 particles to be able to say something useful about the
behavior of the system. Is it feasible to know the initial conditions of 1023 particles in
such a way that a theoretical prediction is even relevant? In the modern world, it may be
tempting to resort to simulations, but a simulation of 1023 particles is completely infeasible
for existing modern machines.

What is to be done to understand the behavior of a large number of particles then? Fun-
damentally, the behavior of an individual particle isn’t all that interesting when there are a
huge number of particles, and we are one will be primarily interested in the global behavior
of the system rather than the behavior of each and every particle. Statistical physics is an
attempt to extract meaningful properties of the global behavior of huge numbers of parti-
cles, even if the specific behavior of each individual particle is unknown. We will attempt
to identify generic laws for the behavior of a large number of particles using mathematical
models that take advantage of the fact that the number of particles N � 1. Much of
our work will focus on developing techniques to understand the behavior of noninteracting
particles, which lay the foundation for more complex interactions in the future.

0.3 Some Mathematical Reminders

The techniques of statical mechanics often differ from other branches of physics. It’s rare
(but not forbidden!) to see special functions appearing as is common in electrodynamics
and quantum mechanics. The difficulties in this course will primarily be conceptual, and
classical statistical mechanics will not require particularly difficult mathematics. It is worth
reviewing some mathematical basics in advance, and making sure you’re comfortable with
all of these before proceeding. Some of these will be quite obvious to you, but if you see
something not obvious please be sure to study it carefully to be sure you understand.
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0.3.1 Exponentials and Logarithms

There are a few features of exponentials and logarithms that are worth mentioning, since
they’ll be coming up a lot in the future.

exey = ex+y ex

ey
= ex−y (0.1)

log(xy) = log(x) + log(y) log

(
x

y

)
= log(x)− log(y) (0.2)(

ex
)a

= eax ex
a
doesn’t reduce further (0.3)

log(xa) = a log(x)
log(x)

log(y)
doesn’t reduce further (0.4)

ex + ey doesn’t reduce further log(x+ y) doesn’t reduce further (0.5)

ex + e−x = 2 cosh(x) ex − e−x = 2 sinh(x) (0.6)

In this course, by log with no specified base, I’m talking about the natural logarithm
(sometimes known as ln). Regardless of base, all logarithms share these properties, and
any logarithm is related to another via logb(x) = log(x)/ log(b). It’s likely you’re already
aware of these relationships, but be sure to not mix the sum-to-product property of the
logarithm with the product-to-sum property of the exponential. Its a common mistake,
and you’ll always get the wrong answer by making it.

Differentiation of these functions will occur often as well. Using the chain rule, we’ll
have

∂

∂x
exp[f(x)] = f ′(x) exp[f(x)]

∂

∂x
log[f(x)] =

f ′(x)

f(x)
(0.7)

The latter will be extremely important in computing ensemble averages.

0.3.2 Discrete sums

There are a few sums that will constantly reoccur in the course that are worth memoriz-
ing:

∞∑
n=0

xn =
1

1− x

∞∑
n=0

xn

n!
= ex (0.8)

Here, we’ve been sloppy about the convergence of the sums: the former converges only if
|x| < 1. Generally speaking, when we compute something in statistical mechanics, we must
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keep that radius of convergence in mind (since the physics of the system you’re looking at
might change drastically near a divergence...). Note that we can use these to write

∞∑
n=0

e−βεn =
1

1− e−βε
∞∑
n=0

e−βεn

n!
= ee

−βε
(0.9)

if this isn’t obvious to you, convince yourself it’s true. It will also often be necessary to
compute sums that involve exponential and polynomial terms. Often, this is best handled
by differentiation under the sum, like so:

∞∑
n=0

ne−βεn = − 1

β

∂

∂ε

∞∑
n=0

e−βεn = − 1

β

∂

∂ε

1

1− e−βε
=

e−βε

(1− e−βε)2
=

[
2 sinh

(
βε

2

)]−2

(0.10)

Convince yourself of every step in this, as you’ll probably be using this technique on your
own in the future. Similar tricks will hold true if the polynomial term has a different order
(e.g. n2 instead of n), they’ll just be more tedious to work with.

0.3.3 Integrals

We’ll also have lots of integrals of exponentials to deal with, so it’s good to recall some
of their properties. It’s very convenient that

∫
dxex = ex + c, generally making simple

exponential integrals easy to deal with. In the same manner as eq. 0.10, we can readily
compute ∫ ∞

0
dxxe−kx = − ∂

∂k

∫ ∞
0

dxe−kx = − ∂

∂k

1

k
=

1

k2
(0.11)

In fact, it’s possible to show that∫ ∞
0

dxxαe−kx =
α!

k1+α
=

Γ(α+ 1)

k1+α
(0.12)

which defines the gamma function Γ(α). For integer α this is just equal to a factorial:
Γ(n) = (n− 1)!. Note that Γ(α+ 1) = αΓ(α) in general.

We’ll be seeing Gaussian integrals over and over in this class. it’s really worth spending a
bit of time to be sure you’re familiar with evaluating integrals involving e−x

2
. To begin,

lets remind ourselves of the simplest case:∫ ∞
−∞

dx e−x
2

=
√
π (0.13)
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This one is pretty fundamental and is worth memorizing. If you forget the value, it’s pretty
easy to recompute if you remember the following trick:(∫ ∞

−∞
dxe−x

2

)2

=

∫ ∞
−∞

dxdye−x
2−y2 =

∫ 2π

0
dθ

∫ ∞
0

drre−r
2

= π

∫ ∞
0

e−u = π (0.14)

where we’ve converted to polar coordinates to evaluate the integral in the third step. Eq.
0.14 means the square of the integral turns out to be equal to the area of a unit circle, so
if you remember that fact you can quickly remember the correct form of eq. 0.13.

There are a couple of tricks useful for computing other Gaussian integrals. First,∫ ∞
0

dx xe−kx
2

= − 1

2k

∫ ∞
0

dx
∂

∂x
e−kx

2
= −e

−kx2

2k

∣∣∣∣∞
0

=
1

2k
(0.15)

where we noted the fact that xe−kx
2

is proportional to d(e−kx
2
)/dx. Note the bounds on

the integral, which run from 0 to ∞, rather than −∞ to ∞ (if it’s not obvious, convince
yourself that

∫∞
−∞ dxxe

−kx2 = 0). We can also evaluate∫ ∞
−∞

dxx2e−kx
2

= − ∂

∂k

∫ ∞
−∞

e−kx
2

= − ∂

∂k

√
π

k
=

π1/2

2k3/2
(0.16)

where we’ve differentiated under the integral in a manner similar to the calculation in eq.
0.10.

Gaussian integrals containing a polynomial term are easy to compute in a different way
since we know about the gamma function:∫ ∞

0
dxx2αe−kx

2
=

1

2

∫ ∞
0

duuα−1/2e−ku =
Γ(α+ 1/2)

2kα+1/2
(0.17)

If α is a half-integer, Γ(α+1/2) is evaluated at an integer and is simple to compute knowing
that Γ(n) = (n− 1)!. If α is an integer the gamma function is evaluated at a half-integer,
which has a tedious expression of Γ(n + 1/2) = (2n)!

√
π/4nn!. Don’t bother memorizing

this, if you need to know it on an exam I’ll write it down for you. Note that Γ(1/2) =
√
π

and Γ(3/2) =
√
π/2, so that we recover eq. 0.13 and 0.16.

Occasionally we will encounter an error function, defined as

erf(a) =

∫ a

−a
dx
e−x

2

√
π

(0.18)

which is the area of a normal distribution over a finite domain. It is sometimes convenient
to note that ∫ a

−∞
dx
e−x

2

√
π

=
1

2

(
1 + erf(a)

)
(0.19)
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which is the area of a normal distribution up to a fixed point a. This integral is 0 if a = −∞
(so erf(−∞) = −1)), 1/2 if a = 0 (so erf(0) = 0), and is 1 if a = ∞ (so erf(∞) = 1). The
error function is often used to represent a sigmoid (a function transitioning between two
constant values, in this case -1 and 1).

0.3.4 Delta Functions

A delta function (truly, a functional not a well defined function) is one that satisfies

δ(0) =∞ δ(x) = 0 for x 6= 0

∫ ∞
−∞

dxδ(x) = 1 (0.20)

A functional with these features will satisfy∫
dxf(x)δ(x) = f(0) (0.21)

so the delta function will constrain a function to a specific point. When trying to perform
an integral with constraints, then, it is often useful to consider δ functions to do so. For
example, an integral of a function f(x, y, z) on the surface of a sphere can be written

I =

∫ ∞
−∞

dxdydzf(x, y, z)δ

(
1− (x2 + y2 + z2)

)
(0.22)

The integral is over all space, with the constraint imposed using the delta function. This is
not always useful, but is always possible and we will utilize this approach for representing
constraints in the later material. Note also that

δ(x) = lim
ε→0

e−x
2/2ε

√
2πε

= lim
ε→0

{
1
2ε |x| ≤ ε
0 |x| > ε

(0.23)

are two ways of writing a delta function (referred to as a ‘nascent’ δ functions) that can
be helpful in explicitly evaluating an integral. The δ function also has the useful property
that ∫

dk

2π
eikx = δ(x) (0.24)

0.3.5 Sterling’s Approximation

We will often deal with large numbers in this course, and in particular the factorial of a large
number. N ! grows rapidly as N increases, but it is difficult to manipulate mathematically
for large N . Often, we will make use of Sterling’s approximation, which states that

log(N !) =

N∑
n=1

log(n) ≈
∫ N

0
dx log(x) = N log(N)−N +O[log(N)] (0.25)
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The proof of this can be found in many textbooks (or Wikipedia), and in this course we
will use it without further proof. Note that in addition to reducing the factorial in terms
of standard functions, this also allows us to compute derivatives involving factorials:

∂ log(N !)

∂N
≈ log(N) (0.26)

which will be convenient throughout the course.

0.4 Quantum Mechanics, Very Briefly

Classical statistical mechanics is able to describe a wide range of phenomena, including the
equilibrium behavior of gasses and chemical reactions, the theory of phase transitions, and
fluctuation effects. However, there were a number of truly baffling experimental results
that did not agree with the classical theory that remained unexplained for decades (we’ll
talk about them in detail later in the course). Quantum statistical mechanics provided an
answer to a host of fundamental problems with classical statistical mechanics. Our goal
in this section is not to describe quantum mechanics (you should take a course in it if you
haven’t already though!), but rather to remind you of some of the fundamental details of
single particle quantum mechanics that we’ll see throughout the course.

Non-relativistic quantum mechanics is based on the Schrödinger equation, which states
that a particle’s state can be described by solutions to the

i~
∂ψ(r, t)

∂t
= ĤΨ(r, t) =

[
p̂2

2m
+ V (r)

]
Ψ(r, t) =

[
− ~2

2m
∇2 + V (r)

]
Ψ(r, t) (0.27)

for the momentum operator p̂ = −i~∇. Separation of variables readily shows that Ψ(r, t) =
e−iEt/~ψ(r) with ψ(r) satisfying the time-independent Schrödinger equation,[

− ~2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (0.28)

|ψn(r)|2 is the steady-state probability density of the particle being found within r and
r + dr, and must be normalized so that

∫
V dr|ψ(r)|2 = 1. Note that this means one can

compute the quantum average of the statistics of a particle (eg 〈r〉q =
∫
V drr|ψn(r)|2).

This quantum average is fundamentally different than the ensemble average of statistical
mechanics (which will be discussed extensively throughout the course).

0.4.1 Infinite Square Wells and Plane Waves

For a non-relativistic particle in a three-dimensional cube with sides of length L, the
solutions to Schrödinger’s equation must satisfy −~2/2m∇2ψ(r) = Eψ(r) along with the
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boundary conditions that ψ(r) = 0 at any boundary. There are an infinite but countable
number of solutions to this problem, which have the form

ψn(r) =

(
2

L

)3/2

sin

(
nxπx

L

)
sin

(
nyπy

L

)
sin

(
nzπz

L

)
(0.29)

where n = {nx, ny, nz} for integer ni. If this is not obvious to you, convince yourself it
satisfies the differential equation and boundary conditions. Note that this wavefunction is
normalized as

∫
box |ψn(r)|2 = 1. Note also that V = L3, and it will often be convenient to

replace L with V 1/3. A particle in a cube has energy En = −~2/2m∇2ψn(r), with

En =
~2

2m
× π2

L2
(n2
x + n2

y + n2
z) =

h2

8mV 2/3
(n2
x + n2

y + n2
z) (0.30)

A particle trapped in the cube can be composed of any combination of these eigenfunctions
to simultaneously satisfy Schrödinger’s equation and the boundary conditions. Note this
means there are a quantized set of fundamental eigenfunctions that fully describe any
particle in a box.

There are conceptual issues in the case of the free particle, which still must satisfy−~2/2m∇2ψ =
Eψ but has no boundaries (thus no boundary conditions and no possibility of a proper
normalization). In this case, there are a continuum of states and an assumed normalization
of

ψp(r) =
1

V 1/2
eip·r/~ (0.31)

with the momentum p = ~n/V 1/3 for the wavenumber n. Here we’ve imposed a volume
ion the (unbounded) particle, so this is a useful representation only in the limit of V →∞.
Happily, this limit is precisely the limit relevant for statistical mechanics.

0.4.2 Notation

Particles in a box can be fully described by a complete and orthonormal set of eigen-
functions, from which any property of the particles position can be computed. It is often
unwieldy and inconvenient to work with the eigenfunctions directly, though. Often, it’s
better to refer to eigenstates which symbolically represent the state of the particle without
direct reference to position or momentum. The eigenstates are

ψn(r) = 〈r|n〉 (0.32)

where the ket |n〉 takes the quantum numbers of the state into account and the bra 〈r|
indicates the state is being evaluated in position space. Alternatively, one could write

ψn(p) = 〈p|n〉 (0.33)
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with the bra 〈p| indicating the state is being represented in momentum space. This more
compact notation allows us to switch between different representations of quantum states,
while also

φ(r) =
∑
n

anψn(r) an =

∫
drψ∗n(r)φ(r) (0.34)

|φ〉 =
∑
n

an|n〉 an = 〈n|φ〉 (0.35)

where |n〉 is the nth eigenstate, with the definition 〈r|n〉 = ψn(r). This notation is very
convenient in a lot of cases, but can be confusing if you’re unfamiliar. A few identities:∫

d3Nxψ∗n(x)ψm(x) =

∫
d3Nx〈n|x〉〈x|m〉 = 〈n|

(∫
d3Nx|x〉〈x|

)
|m〉 ≡ 〈n|m〉 = δnm

|f〉 = 1× |f〉 ≡
∑
n

|n〉〈n|f〉 (0.36)

Ô =
∑
nm

|n〉〈n|Ô|m〉〈m| ≡
∑
nm

Onm|n〉〈m| (0.37)

where |f〉 is an arbitrary state and Ô is an arbitrary operator. This allows us to write
orthogonality conditions and basis expansions very compactly.

0.4.3 The quantum harmonic oscillator

The (one dimensional) quantum Hamiltonian is p2/2m + mω2x2/2 = ~2/2m ∂2/∂x2 +
mω2x2/2 = a†a, with a± = (∓~∂/∂x/

√
2m+ ωx

√
m/2)/

√
~ω. We can solve Schrödingers

equation directly to determine the eigenfunctions of the system, and would find ψn(x) ∝
Hn(x

√
mω/~)e−mωx2/2~ with Hn(y) the nth Hermite polynomial. That’s all well and good,

but tedious to work with. We can do a lot better by looking at eigenstates rather than
eigenfunctions here. The states of a quantum particle in a harmonic potential can be
described in terms of eigenstates |n〉 that satisfy Ĥ|n〉 = En|n〉. It is straightforward to
show that the combined operator

a+a−f = (aa† − a†a)f (0.38)

=
1

~ω

(
mw2x2

2
− ~2

2m

∂2f

∂x2
+
~ωx

2

∂f

∂x
− ~ωx

2

∂f

∂x
− ~ω

2
f

)
(0.39)

=
Ĥf

~ω
− f

2
(0.40)
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This calculation makes it easy to show that

Ĥ =
~ω
2

(2a+a− + 1) (0.41)

[a+,a−] = a+a− − a−a+ = −1 (0.42)

[Ĥ,a±] = ±~ωa± (0.43)

If we suppose there’s a state with Ĥ|n〉 = E|n〉 (an eigenstate of the hamiltonian with
energy E), then it must be that Ĥa±|n〉 = a±Ĥ + [Ĥ,a±] = a±E|n〉± ~ω|n〉. That means
that if a±|n〉 is also an eigenstate of the hamiltonian, with an energy level that’s higher
or lower for + or −. Thus, the operators a± act on an eigenstate to move it to another
eigenstate with a higher or lower energy level. Since there must be a minimum energy level
for the system, there must be a |0〉 with a−|0〉 = 0 (the lowering operator can’t go lower).
Since a+a−|n〉 = (Ĥ/~ω− 1/2)|n〉 = (En/~ω− 1/2)|n〉, it must be that E0 = ~ω/2 for the
lowest energy state (since a−|n〉 = 0). Since Ĥa−|n〉 = (En − ~ω)|n− 1〉, it must be that,
for a quantum harmonic oscillator, that

En = (n+ 1/2)~ω (0.44)

In order to actually compute the position of any particle, we need to resort to using the
position representation of the states (and thus, the painful Hermite polynomials). However,
if we are interested solely in the energy levels of the quantum harmonic oscillator (and often
we will be!), we need only use the fact the energies are linear in the quantum number.

0.5 Summary

0.6 Homework Problems

1. The Γ function was defined by Γ(a) =
∫∞

0 dxxa−1e−x. Show explicitly that Γ(1) = 1
and Γ(n) = (n−1)Γ(n−1) for all integers n. Note that this demonstrates by induction
that Γ(n) = (n− 1)!.

2. When discussing Sterling’s approximation, we ignored higher order terms. The next
term in Sterling’s approximation is log(N !) ≈ N log(N)−N− 1

2 log(N). For N = 100,
determine the relative error between this approximation and the one occurring in eq.
0.25. Do the same for N = 1023. Is the approximation in eq. 0.25 acceptable for
very large numbers?



Chapter 1

A Brief Summary of
Thermodynamics

The foundations of modern statistical mechanics rest on the laws of thermodynamics of
the early-to-mid nineteenth century, primarily through empirical studies. Through a wide
range of experiments (that many of us learned about in high school chemistry), relationships
between thermodynamic variables were identified. For example, a variety of experimen-
tal observations (Boyle’s law, Charles’s law, etc) suggested that PV ∝ T , an empirical
statement of the ideal gas law. These relationships lead to a mathematical framework
that accurately describe a wide range of experiments and enabled people to design ma-
chines leading to the Industrial revolution. Fundamental to this theory is are the laws of
thermodynamics.

1.1 The Laws of Thermodynamics

There are many equivalent ways to phrase the laws of thermodynamics, which can be found
in a variety of textbooks. In this chapter, we will briefly summarize the laws as:

0. Thermometers exist. This is often phrased in the more precise way: Two systems at
equilibrium with a third are at equilibrium with each other.

1. Energy is conserved. This extensively discussed below, but is initially phrased as
dU = d̄Q−d̄W .

2. No engine is perfectly efficient. Equivalently, there is no process whose sole outcome
is to extract heat from a reservoir and convert it entirely into work. Equivalently,

11
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any thermodynamic process must increase the total combined entropy of the system
and reservoir.

3. There exists an absolute zero of the temperature, at which the entropy is a minimum.

While each is important, we’ll be occupied by the first and second in this section. We’ll
re-discover these laws in more detail using statistical mechanics in later sections.

The statement of the first law is essentially a statement of the conservation of energy. For
a system of N particles in contact with a reservoir at temperature T , the change in internal
energy dU is

dU = d̄Q−d̄W (1.1)

where d̄Q and d̄W are the path dependent, inexact differential heat flow (into the system)
and work done by the system, respectively. The infinitesimal d̄W infinitesimal work done,
with the total work done by the system W =

∫
pathd̄W not path-independent: it depends

on the final state of the system as well as how it got there. Increasing pressure then volume
produces a greater mechanical work than increasing volume then pressure, as shown in Fig.
1.1 where the mechanical work done in path A is greater than in path B. The heat d̄Q is
absorbed by the system from an external reservoir if there is a temperature change and
no accompanying mechanical work. Note that this requires the existence of some external
reservoir held at some temperature T from which energy can be extracted from or pumped
into. The first law of thermodynamics is simply a statement that, since energy is conserved,
there is a quantity called heat that accounts for the energy difference.

P
re

ss
u

re

Volume

path
 A

path
 B

Figure 1.1: Thermodynamic path between an initial and final state. The work along each
part of the path is dW = pdV , and ∆WA 6= ∆WB. The difference in work along each path
is accounted for with a difference in heat absorption.
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1.1.1 Exact vs Inexact differentials

Exact differentials

Work and heat are inexact differentials, meaning the change in either in a thermodynamic
process depends not only on the initial and final states, but also on the path taken to get
there. To understand how this occurs, it is worth examining exact differentials in detail. A
one dimensional integral of any function between two points depends only on the boundary.
That is, defining f(x) = dF/dx, we can compute the integral

∫ f
o dxf(x) = Ff − Fo. This

process is independent of the path between the two points, and depends solely on the initial
and final states.

For a function of two variables F (x, y), we can use the chain rule to determine an infinites-
imal change:

dF = f(x, y)dx+ g(x, y)dy (1.2)

with f = ∂F/∂x|y and g = ∂F/∂y|x. We now want to integrate this differential from an
initial (at {x0, y0}, with value Fo) to final (at {xf , yf}, with value Ff ) state. For this exact
differential, we can write∫ f

o
dF = Ff − Fo =

∫ xf

x0

dxf [x, y(x)] +

∫ yf

y0

dyg[x(y), y] (1.3)

Note that each of the two integrals at the end of eq. 1.3 involve the path taken between
{x0, y0} and {xf , yf}, but the final answer cannot involve the path because the final answer
depends solely on the endpoints. That is, the specific values of x(y) or y(x) do not affect
the value of the integral.

For example, if F (x, y) = x2y/2 over the domain 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, we have∫ f
o dF = Ff − Fo = 1

2 . This integral can be performed by integrating∫
dF =

∫ 1

0
dxf

(
x, y[x]

)
+

∫ 1

0
dyf

(
x[y], y

)
(1.4)

where f = xy and g = x2/2. y[x] (or equivalently x[y]) defines the path we are taking when
we perform the integral, depicted in Fig. ??. For path A, with x[y] = y,

∫ 1
0 dxf(x, y[x]) +∫ 1

0 dyg(x[y], x) = 1
3+ 1

6 = 1
2 . For pathB, we similarly find

∫ 1
0 dxf(x, y[x])+

∫ 1
0 dyg(x[y], x) =

0 + 1
2 = 1

2 . Despite the explicit dependence of the path due to the presence of x[y], the
integral

∫
dF is indeed independent of the path.
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Figure 1.2: Two possible paths between the initial ((xo, yo) = (0, 0)) and final (xf , yf ) =
(1, 1) states: a straight line (satisfying x = y) or a piecewise constant path (with y = 0

for all x < 1). For an exact differential,
∫ f
o dF = F (1, 1) − F (0, 0) regardless of the path

taken.

Inexact differentials

Of course, we can always write fdx + gdy for some f and g, but it is clearly possible to
choose two functions f and g so that they do not satisfy f = ∂F/∂x|y and g = ∂F/∂y|x
for any function F (x, y). For example, we could choose f(x, y) = xy and g(x, y) = 0. Note
that in this example∫

f(x, y)dx =
1

2
x2y + c1(y)

∫
g(x, y) = c2(x) (1.5)

for some unknown functions c1(y) and c2(x). It is impossible to equate these two integrals,
since one depends on x2y and the other depends solely on x, which means it’s impossible
to write this as an exact differential of a single function. In this case, we would have to
write the total infinitesimal as inexact: d̄F = fdx + gdy. Note that if we know the path
x(y) (or equivalently y(x)), we can evaluate these integrals. However, the total value of∫ f
o d̄F does not depend solely on the initial or final endpoints, but rather depends on the

entire path between the endpoints.

In general, it is tedious to check for exactness by explicitly integrating both functions
and determining if two unknown functions c1(y) and c2(x) can be chosen to match

∫
fdx

and
∫
gdy. Often, it is simpler to check for exactness by noting that, since ∂2F/∂x∂y =

∂2F/∂x/∂y, it must be that ∂f/∂y = ∂g/∂x for a differential to be exact. This idea will
be reused when we discuss Maxwell relations below.

1.2 Entropy and Heat in Reversible Processes

Heat was a poorly understood concept in the nineteenth century. It had units of energy, but
could obviously be both created and destroyed. Heat can also flow between two systems,
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giving rise to the zeroth law of thermodynamics which defines thermal equilibrium as the
state with no heat flowing between two connected systems. The fact that heat is not an
exact differential (is not path independent) makes eq. 1.1 difficult to use, since one needs
to keep track of the entire history of a system in order to determine its energy.

A better understanding of the states a reversible process undergo can be achieved by
connecting the mysterious concept of path-dependent heat to the (equally mysterious)
concept of path-independent entropy. Here the idea is to recognize that while d̄Q is inexact
and path-dependent, the quantity dS = d̄Q/T is exact and path independent. This fact
is most easily seen by considering an isothermal process at equilibrium, for which T is
held fixed. This means the internal energy is constant (dU = 0), which we will explicitly
demonstrate in Ch. 3 and 4 (but was known empirically in the mid 19th century). We will
also use the ideal gas law (which we will also show in Ch 3-4 but was known empirically
since the early 19th century) is pV = nRT . Combining both of these facts, we can thus
write

d̄Q = −U +d̄W = d̄W = pdV =
nRT

V
dV

dV

V
∝ d̄Q

T
(1.6)

Since dV/V is exact (depending only on the endpoints), it must be that dS = d̄Q/T is
exact as well. This defines the entropy, and allows us to compute the total change in heat
for an isothermal path directly, via

∫
d̄Q =

∫
TdS = TS.

This derivation depends on the process being isothermal, but it is possible to show that
this can be extended to processes in which the temperature varies. This was originally
accomplished by Carnot using a hypothetical process that fully separates heat changes
from temperature changes, pictured in Fig. 1.3. In the isothermal steps, heat is extracted
from the reservoir and converted directly into mechanical work, without any change in
temperature or internal energy. Using the ideal gas law, we can show directly that ∆Q =∫ f
o pdV = nRT log(Vf/Vo) for either isothermal path. The efficiency of this engine, η,

is

η =
work done

max work that could be done
=
Q> −Q<

Q>
=
T> − T<
T>

= 1− T<
T>

(1.7)

Because the Carnot cycle can be reversed, it is possible to show that all engines must have
a lower efficiency than a Carnot engine (else they could be coupled to a Carnot refrigerator
to produce an efficiency with 100% efficiency, violating the second law).

Since W = ηQ> = (1−T</T>)Q> and W = Q>−Q<, we find Q>
T>

= Q<
T<

, or S = Q
T =const.

This means ∮
Carnot cycle

dS = 0 (1.8)
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over the Carnot cycle, even if the temperature is varied. Any reversible thermodynamic
cycle can be approximated by a sequence of infinitesimal isothermal and adiabatic steps,
meaning that ∮

Reversible cycle
dS = 0 (1.9)

Since we can subdivide any cycle into two paths, it must be that∫
Reversible path

dS = Sf − So (1.10)

is independent of the path.

P
re
s
s
u
re

Volume

Figure 1.3: The Carnot cycle is a cyclic path, resulting in ∆Utot = 0, under which two steps
have constant temperature (isothermal) and two steps have zero heat flow (adiabatic). The
isothermal paths are p ∼ T/V , the adiabatic paths are p ∼ T/V γ for the heat capacity
ration γ (discussed in the text).

1.2.1 Entropy in the first law

Taken together, the previous section means we can write the first law for any reversible
process as

dU = TdS − pdV (1.11)

Irreversible processes produce entropy which can never be spontaneously recovered. Ex-
amples include heat loss to the environment, such as a piston with friction, or reversible
nonequilibrium processes such as the temperature equilibration of two bodies brought into
contact. Thermodynamics is directly applicable only at equilibrium, and entropy estimates
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based on thermodynamics will always be underestimates out-of-equilibrium. In particular,
we will find that d̄Qirrev ≥ d̄Qrev, (since an irreversible process absorbs more heat than a
reversible process), so (d̄Q)irrev ≥ pdV − dU .

Entropy quickly came to be associated with the notion of disorder for a variety of philo-
sophical reasons, with high entropy states having more disorder and low entropy states
having low disorder. Note that the derivation of dS = dQ/T gives absolutely no indication
of what entropy is. There was no reference to disorder or the arrow of time. A great
strength of statistical mechanics is giving insight into the meaning of entropy in terms of
accessible states, which we’ll be discussing in great detail in later chapters.

1.3 Chemical Potential and varying Particle Number

In the previous sections we discussed solely two contributions to the internal energy: the
heat absorbed by the system from the reservoir and the energy converted into mechanical
work. An important term not included above is the effect of variation in the number of
particles. Thermal equilibrium requires a heat reservoir that defines the temperature of the
system, and chemical equilibrium likewise requires a reservoir of particles that can enter
and exit the system. The modern representation is

dU = TdS − pdV +
∑
i

µidNi (1.12)

where Ni is the number of particles of type i in the system. and µi is the chemical
potential of that species. µi is the energy required to insert a new particle of type i into
the system while holding S and V fixed. The chemical potential is essential for open
systems (say a system immersed in a bath of solvent), where some molecules may move in
or out freely.

In the 19th century, prior to the knowledge that physical systems were composed of parti-
cles, this would have been described in terms of species concentrations. For an ideal gas
(where there is only one species), we expect the equilibrium density in the system to match
that of the reservoir (ρ = ρexternal), something we will show explicitly later. This is similar
to the adoption of the same temperature for thermal equilibrium. For this and the next
few sections we won’t be working with a fixed number of particles, but it’s useful to be
aware of it from the outset. We’ll describe the chemical potential more completely in later
sections.
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1.4 Other Extensions of the first law

Thermodynamic potentials can be defined for more exotic systems as well, such as charge
or angular momentum. For example, if the system has an electrostatic potential φ it would
take an energy φdq to add dq charge to a system at equilibrium with the reservoir. The first
law of thermodynamics becomes dU = TdS− pdV +φdq. Other extensions of the first law
include the addition of a dipole moment (with dU → dU −BdM with B the external field
and M the total magnetization of the system), an external tension (dU → dU +fdL where
f is an applied force and L is a stretching length), surface tension (dU → dU + γdA with
γ the surface tension and A the surface area). The first law of thermodynamics will apply
to any system of interest so long as it is at thermal equilibrium with a reservoir.

1.5 Legendre Transforms and The Helmholtz Free Energy

Eq. 1.11 is sometimes called the fundamental equation of thermodynamics (for fixed N
at any rate), and gives the variation in the energy in terms of variation of entropy and
volume. Some terminology is useful for understanding this and other thermodynamic
potentials.

• The total internal energy U is a thermodynamic potential

• p and V are called conjugate variables, as are T and S, since they are coupled to
each other and not to any other thermodynamic variable.

• The entropy S and volume V are the independent variables or proper variables. These
are the quantities that are varied.

• The temperature T and pressure p are dependent variables. Depending on the path,
these quantities change with S and V .

While eq. 1.11 is exact in a reversible process, it is actually not useful for many practical
reasons. It is difficult to imagine an experiment in which one varies the entropy directly:
there is no apparatus with an ‘entropy knob’ that tunes S directly. While fundamental,
Eq. 1.11 lacks the necessary connection to experiments in order to actually make a useful
prediction (which is an important aspect of any theoretical undertaking!). However, we all
know from experience that varying the temperature T is experimentally possible.

To make the theory more experimentally useful, we must construct new thermodynamic
potentials that swap the roles of entropy and temperature. We do this by performing a
Legendre transformation, which takes advantage of the fact that

d(TS) = T (S, V )dS + S(T, V )dT (1.13)
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so that

d(U − TS) = TdS − (TdS + SdT )− pdV = −SdT − pdV (1.14)

This leads to the definition of the Helmholtz free energy A = U −TS (sometimes the letter
F is used), whose proper variables (those that are varied) are T and V . This may seem
like a trivial exercise: after all, all we did was subtract TS from the energy. The Legendre
transform is fundamental and useful because it exchanges one proper variable to another
in a mathematically precise and exact way. A variety of thermodynamic potentials have
been historically very useful, as discussed in Sec. 1.5.

Often, students come across the Legendre transformation in the context of transforming
between the Lagrangian and Hamiltonian systems (with H =

∑
i piq̇i−L), and the purpose

of the transformation is often not obvious when you first encounter it. In the case of the
Legendre transformation in 1.14, the purpose is more clear: we have replaced the energy,
whose independent variables must be S and V , with a new function whose dependent
variables must be T and V . Because T and V are easily accessible variables experimentally,
the Hemholtz free energy is a far more useful quantity in many experiments.

1.5.1 Free Energy Minimization

The Helmholtz free energy is particularly useful for the fact that it’s minimized at equi-
librium. This fact arises from the second law of thermodynamics, which can be restated
that the entropy change of a system dSsystem ≥ 0. This restatement is because the Carnot
cycle is as efficient as possible, due to the fact that the total entropy is constant in the
process. This implies the entropy change of any system dSsystem ≥ 0. If we have a system
at thermal equilibrium with a reservoir of temperature T , the total entropy of the combined
system is dStot = dSsys + dSres ≥ 0. For an isolated system, dUtot = dUsys + dUres = 0,
and for a reservoir of constant volume dUres = TdSres, or dSres = −dUsys/T . Then
TdSsys + TdSres = −dUsys + TdSsys ≥ 0. This has two important implications:

• If no work is done (d̄W = 0), d(U − TS) = dA ≤ 0 for constant volume and temper-
ature. This implies A must be minimized at equilibrium, since it can only decrease.
An example of such a minimization is in Sec. 1.5.2.

• The Helmholtz free energy represents the maximum amount of work that can be
extracted from a system by the reservoir at constant temperature and volume, since
dUsys − TdSsys = d̄Wsys.

The former is an important feature of the Helmholtz free energy, because for a system at
equilibrium with a bath at constant T and V , the free energy is minimized in terms of
all other variables. Note that the internal energy is not minimized at equilibrium (energy
is minimized for a classical system not coupled to a thermal bath), nor is the system’s
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entropy maximized (the entropy of the universe is always increasing, but small systems
can decrease their entropy). A is not minimized with regards to T or V , (the former set
by the thermal bath, and the latter fixed unless mechanical work is being done), but is
minimized with regards to any other thermodynamic variables.

1.5.2 Example of minimization: Nucleation

An example of how the free energy can be used to determine the equilibrium properties of a
system can be found in a simplified model of the nucleation of a droplet in condensing gas.
We imagine a gaseous state (red in Fig. 1.4A, having free energy Ag = Ngαg with αg the
free energy per unit molecule. α takes into account all of the energetic interactions between
molecules in the gas phase, the chemical potential, and the entropy (which is difficult to
compute). Suppose the gas can also condense into a spherical droplet (diagrammed in Fig.
1.4A), meaning the atoms in the gas can be lost (reducing the free energy of the gas) and
added to the droplet (potentially increasing its free energy). We assume the free energy of
the droplet has the form

Ad = Ndαd + 4πR2γ =
4πR3

3
ρdαd + 4πR2γ (1.15)

The first term is the free energy of the droplets in the bulk (in terms of the free energy per
molecule in the droplet), and the latter is a surface energy term that resists the formation
of an interface. The total free energy of the combined system is

A(R) =
4πR3

3
ρdαd + 4πR2γ +

(
N − 4πR3

3
ρd

)
αg (1.16)

=
4π

3
R3ρd∆α+ 4πR2γ + const (1.17)

Equilibrium will occur when A is minimized with respect to R, as required by the second law
of thermodynamics. As shown in Fig. 1.4(B), If ∆α = αd−αg ≥ 0, A(R) is monotonically
increasing and the equilibrium droplet size is R = 0. This is unsurprising: the droplet
phase has a higher free energy than the gas phase, so to minimize the total free energy
the system will simply remain in the gas phase. However, if ∆α < 0, the droplet phase
has a lower free energy than the gas phase and there is a competition between the bulk
phase (where adding atoms decreases the total free energy) and the surface tension (which
increases the free energy). The former term scales with R3 and the latter with R2, so
we know there must be some radius large enough that the reduction in free energy will
overcome the surface tension. This occurs where dA/dR = 0, or

R0 = 0 or Rcrit = − 2γ

ρd∆α
(1.18)
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Figure 1.4: default

Beyond Rcrit, the free energy decreases monotonically (meaning adding more and more
atoms to the droplet becomes energetically favorable. Thus, the free energy is minimized
when all of the molecules are in the droplet. The energy-minimizing radius will satisfy
4πR3

eqρd/3 = N .

The equilibrium state of any system will be the one that minimizes the energy. Note,
though, that it may be difficult for a system to attain equilibrium if it starts in a local
energetic minimum. If we prepare a system with R = 0 (no droplets), there is a free energy
barrier between the local minimum of R = 0 and the global minimum of R = Req. This
barrier height Fbarrier = F (Rcrit) − F (0) = 16πγ3/3∆α2ρ2. Since we have not specified
these parameters, it is entirely possible for this to be an enormous barrier. If the barrier
height is very large, the system will be trapped in the gaseous state until a large droplet
is created by chance (a nucleation event). While trapped in the R ≈ 0 regime, the system
is in a metastable state: a state that is thermodynamically stable to small perturbations
due to being a local free energy minimum, but is not the global free energy minimum
and thus is not the global free energy minimum. Once a droplet has formed of radius
R ≥ Rcrit, the system will spontaneously condense into the droplet phase, will all gas
molecules immediately drawn into the growing droplet.

1.6 Other Thermodynamic Potentials

The Helmholtz free energy is the thermodynamic potential most commonly used by physi-
cists, but others have been particularly useful in other fields (chemistry, biology, etc).
Helmholtz holds T and V fixed, Gibbs T and p, and Enthalpy S and p. Each of these po-
tentials are useful in their own domains, depending on what is experimentally accessible and
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Table 1.1: Definitions of the various potentials commonly used at constant N .

Potential Definition Independent Variables Dependent Variables

Internal Energy U = ST − pV + µN S, V , N p, T , µ

Helmholtz Free Energy A = U − ST T , V , N p, S, µ

Enthalpy H = U + pV S, p, N V , T , µ

Gibbs Free Energy G = U − TS + pV T , p, N V , S, µ

Grand potential Φ = U − TS − µN T , V , µ p, S, N

measurable. The enthalpy measures the total internal energy of the system independent of
the mechanical work (since ∆H = ∆Q). The Helmholtz free energy measures the capacity
of the system to do work for an isolated system at constant volume. The Gibbs free energy
represents the maximum amount of work extractable from a system at constant pressure,
and is minimized at equilibrium if the pressure is held fixed (much like the Helmholtz free
energy at constant volume). The use of the grand potential will be seen when we discuss
the grand canonical ensemble. The appropriateness of any particular potential depends
on the system you’re interested in, and what you intend to measure. Generally speaking,
physicists tend to work with A, while chemists tend to work with G.

Note that if we have additional terms in our expression for the energy, it is possible to
define new thermodynamic potentials. For example, the expression dU = TdS−pdV +φdq
is not useful if we cannot control the number of charges in the system experimentally, and
in some cases it is easier to directly manipulate the potential (by imposing an external
field we control precisely for example). A new thermodynamic potential can be defined as
X = U − (TS + φq), with dX = −SdT − pdV − qdφ. Regardless of your system of interest
the ability to switch from an experimentally inaccessible independent variable to one that
is experimentally accessible is useful.

1.7 Extensive vs Intensive Variables

A different distinction between thermodynamic variables is extensive vs intensive, with the
former related to variables that increase with system size and the latter with variables
that are independent of system size. If we imagine taking two identical isolated systems
and bringing them together, the total system will have the same temperature, the same
pressure, and the same chemical potential. However, it will have twice as many particles,
twice the volume, and twice the entropy (the latter has not been proven yet, but will be
shown to be true in later chapters).

When connected to a heat bath, the distinction between extensive and intensive variables
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System

Intensive varibles:  

not affected by system size

Extensive varibles:  

proportional to system size

Figure 1.5: Intensive variables associated with the thermal bath, which cannot be affected
by the system size, are T , p, and µ. The heat bath is presumed so large that no change to
the system can alter their values, and they are intensive variables. Extensive variables S,
V , and U are all proportional to N .

are the same, but the argument changes somewhat. For a system connected to a heat bath,
the intensive variables summarize the property of the bath. The temperature of the heat
bath is independent of the number of particles in the system, as the bath is assumed to
be sufficiently large (schematically diagrammed in Fig. 1.5) that heat or energy exchange
with the system cannot change the bath’s temperature. Likewise, the pressure and chemical
potential of the bath is unalterable by the system. Intensive variables are independent of
the size of the system.

Extensive variables are those that are proportional to the size of the system. For a system
at equilibrium with the bath, the density of particles in the volume will be constant (due
to the fixed chemical potential of the bath), with ρ = N/V held fixed, so V ∝ N . Each
particle will have an average energy proportional to T , so U ∝ T . The total entropy of the
system is proportional to the number of particles.

1.8 Heat Capacity

The theory in Sec. 1.5 gives a method to link the theory to realistic experimental conditions.
To compare the theory to experiment, it’s also useful to compute observables that are
experimentally accessible. The simplest and most widely used is the heat capacity, which
we’ll spend a lot of time on throughout this course. The heat capacity determines the
change in energy due to a change in temperature, the former of which is easily observed
and the latter easily controlled. The heat capacity will depend on the system as well as
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the experimental protocol, i.e. if pressure or volume is held fixed.

CV =
∂U

∂T

∣∣∣∣
V

Cp =
∂H

∂T

∣∣∣∣
p

(1.19)

where H = U + pV is the Enthalpy of the system. Note that the specific heat of a system
is cV = CV /Mtot, the heat capacity normalized by the mass of the system. Don’t get the
terms mixed up. In this course we’ll generally only be interested in the heat capacity. For
an ideal gas of noninteracting particles, it was known that U = 3nRT/2 is independent of
the volume of the container (we will show this in later sections), and so dU/dT |V = 3nR/2.
The specific heat at constant pressure can be computed using by coupling this to the ideal
gas law, pV = nRT , with

Cp =
dH

dT

∣∣∣∣
p

=
dU

dT

∣∣∣∣
p

+
d(pV )

dT

∣∣∣∣
p

=
dU

dT

∣∣∣∣
V

+
d(nRT )

dT
= CV + nR (1.20)

Note that we can freely change dU/dT |p and dU/dT |V because dU is an exact differential,
so the change in U is independent of the path taken.

The fact that the heat capacity is measurable has a variety of benefits beyond providing
falsifiability to the theory. We can also physically measure the change in entropy so long
as we can measure CV (assuming a reversible process):

∂S

∂T

∣∣∣∣
V

=
∂S

∂U

∂U

∂T

∣∣∣∣
V

=

(
dU

dS

)−1dU

dT

∣∣∣∣
V

=
CV
T

∆S =

∫ Tf

T0

dT
CV (T )

T
(1.21)

This is also a convenient way to represent the variation in energy in some cases, since
TdS = CV (T )dT and therefore dU = CV dT − pdV . Note that this is another way of
switching from S as an independent variable to T as an independent variable (in contrast
to the Legendre transform used in deriving A).

The heat capacity ratio, γ is used in a number of contexts, and is

γ =
Cp
CV

(1.22)

This measures the rate of increase in energy of a system that is able to do mechanical
work (through the change in volume) to one that cannot (fixed volume). There are some
interesting thermodynamic results that can be derived using the heat capacity ratio at
constant volume and pressure for an ideal gas , and in particular for the ideal gas

pV γ = const TV γ−1 = const (1.23)

This derivation is another homework problem.
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1.9 Maxwell Relations

Thermodynamic potentials make it possible to determine a number of relationships between
variables that are not obvious. This is due to the fact that they involve exact differentials.
For any function F (A,B), if we have

dF = a(A,B)dA+ b(A,B)dB (1.24)

where a and b are the dependent variables and A and B are the independent variables, we
can take two derivatives to derive a relationship between a and b. This is due to the fact
that

∂

∂B

(
∂F

∂A

)
=

∂

∂A

(
∂F

∂B

)
(1.25)

∂a(A,B)

∂B
=

∂b(A,B)

∂A
(1.26)

Note that the derivatives are taken with all other independent variables held fixed (so B
is not varied in a derivative involving ∂/∂A). We’ve dropped the common notation here.
That means, using dA = −SdT − pdV + µdN , that

∂S

∂V

∣∣∣∣
TN

=
∂p

∂T

∣∣∣∣
V N

∂S

∂N

∣∣∣∣
TV

= − ∂µ
∂T

∣∣∣∣
V N

∂p

∂N

∣∣∣∣
TV

= − ∂µ
∂V

∣∣∣∣
TN

(1.27)

Similar relations can be derived using the other thermodynamic potentials. These are gen-
erally called Maxwell relations, and are fundamental in relating experimentally measurable
variables in some experimental settings (where only specific variables are experimentally
accessible).

1.10 Summary

In this chapter, we’ve talked about predictions of thermodynamics, the variables that are
addressed, and the techniques to manipulate those variables. The primary take-away points
are

• The predictions of thermodynamics are fundamentally correct. Any theoretical en-
terprise that does not agree with the laws of thermodynamics is wrong, and we’ll
need to ensure statistical mechanics actually agrees with thermodynamics before we
can believe it is a valid theory.

• Thermodynamics doesn’t tell us what entropy is. We can understand its properties
mathematically, and can guess it’s meaning on philosophical grounds, but there is no
formal proof of how entropy relates to any physical property outside of the equally
mysterious ‘heat.’



CHAPTER 1. A BRIEF SUMMARY OF THERMODYNAMICS 26

• Various relationships exist between thermodynamic potentials (via Legendre trans-
formations) and variables (via Maxwell equations) that can be used in statistical
physics. It can still be useful to use this classical theory to identify relationships
between variables.

• The internal energy U is useful. The free energy A is useful as well, for a different
reason. These thermodynamic potentials tell us something different and important
about our system.

• Specific heat is one of the fundamentally useful observables in thermodynamics, and
will remain so in statistical mechanics. It is measurable, and a great deal of effort has
gone into designing the techniques to measure the relationship between temperature
and energy.

1.11 Homework Problems

1. An elastic band has the fundamental equation dU = TdS + fdL, where f is the
externally applied stretching force and L the length of the band. If the elastic band is
stretched adiabatically and reversibly (so that dS = 0), will the temperature increase
or decrease as the length increases?

2. Show that SdT +Ndµ = V dp.

3. An ideal gas satisfies U = TS − pV , pV = nRT , and U = 3nRT/2, where R is the
gas constant and n the moles of gas in the system. For an adiabatic process, with
d̄Q = 0, show that an ideal gas satisfies CppdV = −CV V dp. Show this implies that
pV γ = constant.

Note: This is a standard result, with a solution easily found on Wikipedia and in
most textbooks on thermodynamics. You may use any resources you like, but please
recall the academic honesty policy. Directly copying without attribution is cheating.

4. Consider a column of gas divided into a sequence of small volumes dV = Adh at
height h, each containing an ideal gas. The temperature at height h is maintained
at T (h). The number density is a function of both height and temperature, with
ρ = ρ[h, T (h)]. In the absence of gravitational forces, the chemical potential is µ[ρ].
In the presence of gravity, each particle has an energy mgh in the volume at height
h.

(a) Show and explain why the gravitational potential energy acts as an effective
height-dependent chemical potential in each volume.

(b) Argue why an infinitesimal change in pressure must satisfy dp = −mgρdh. Note
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that, while not the only possible argument, the discussion in Huang’s chapter 2
may be helpful.

(c) For an ideal gas, with p = ρkBT with kB Boltzmann’s constant, show that

∂ρ

∂h

∣∣∣∣
T

= − mg

kBT (h)
ρ−

(
∂ρ

∂T

∣∣∣∣
h

+
ρ

T

)
dT

dh
(1.28)

Hint: One way to approach the problem is to recognize that dρ/dh = ∂ρ/∂h|T +
∂ρ/∂T |hdT/dh

(d) If the temperature is held constant (a reasonable approximation over short dis-
tances), show that eq. 1.28 implies ρ(h) = ρ0e

−mgh/kBT . Estimate the numerical
value of kBT/mg in km.

(e) For an ideal gas at constant T , the chemical potential is µ = kBT log[ρ(h)λ3]
for λ ∝ T−1/2 (we will show this is true in later chapters). Explicitly confirm
that chemical equilibrium is satisfied if Eq. 1.28 is satisfied for constant T .



Chapter 2

Kinetic Theory (primarily
following Huang ch 3-4)

Thermodynamics gave a remarkably accurate picture of the behavior of a gas, enabling
the design of the technology that led to the industrial revolution and internal combustion
engines. However, it gave a very little information on the fundamental nature of the gas,
with the concept of entropy (1826) useful but totally unclear concept. While physicists were
developing Thermodynamics in the early 19th century, a chemist named John Dalton had
suggested that chemical reactions could be explained by the existence of atoms, indivisible
objects that were identical within chemical species but distinct between chemical species.
This concept had gained favor in the chemistry community, but the physics community
generally rejected atomistic theories of gasses. Clausius had derived the equipartition
theorem (which we’ll discuss in later chapters) in 1865, and Maxwell had derived his famous
velocity distribution (which we’ll discuss later in this chapter) in 1866. At the time, there
was no obvious relationship between the idea of an atom and that of entropy, which is where
Boltzmann began his work. He used a technique to show that Maxwell’s distribution
is inevitable for a real gas, suggesting the physical reality of atoms as well as giving a
quantifiable sense of entropy as ‘disorder.’

2.1 Scattering Processes and Boltzmann’s Transport Equa-
tion

In a gas of 1023 particles, it’s essentially useless to know the details of every single particle
(as we’ll discuss further below). The statistics of the system need to be aggregated on
a more coarse grained level in order to be useful. Rather than ask “what is every single

28
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particle doing at any given instant in time,” it’s more useful to understand “what is the
probability of any particle having a particular position and momentum at any given time.”
The former is simply too detailed to be useful, while the latter tells you about the ‘typical’
behavior of the particles in the system. This single-particle distribution can be understood
using the Boltzmann transport equation.

2.1.1 Time-dependent distribution functions

Volume

Volume

Time

Figure 2.1: Particle density in phase space. Shown are one position and one momentum
axes, with the full dimensionality three momentum and three positions. Phase space is
divided into bins of volume d3rd3p, with a continuous distribution f(r,p, t) assumed since
N � 1. Particles in some position/momentum bin will move to a new bin as time evolves
according to Eq. 2.2 or 2.3.

For any system of particles, we can identify the single-particle distribution of position and
momentum, f(r,p, t), that identifies the fraction of particles at position r and r+δr having
momentum between p and p and p + δp at time t (see Fig. 2.1). For only a few particles,
this will be a very jagged distribution in the 6-dimensional position-momentum space, but
for N = 1023 particles the distribution will be a smooth function. In this, we will normalize∫
d3pd3rf(p, r, t) = N for all t, as it’s a distribution function for a single particle (this

has no impact on the analysis, but is important to realize when determining system-scale
details). If the particles are not interacting, the steady-state dynamics of the system must
satisfy

f

(
r +

pδt

m
,p + Fδt, t+ δt

)
d3pd3r = f(r,p, t)d3pd3r (2.1)

where F is the force on each particle (caused by an external field, not by collisions). In the
limit as δt→ 0, we can perform a Taylor expansion and see that(

∂

∂t
+

p

m
· ∇r + F · ∇p

)
f(r,p, t) = 0 (2.2)

Here there are no collisions between particles, and if there were no external force applied
(if F = 0) there would be no change in the momentum of any particle. Note that there’s
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no well-defined steady-state distribution of the function f in the absence of a force. Any
function of the form f(r,p, t) = g(pt/m− r,p) will satisfy eq. 2.2.

2.1.2 Streaming functions due to collisions

If the particles are interacting and collisions are permitted, Equation 2.2 must be modified
to account for interactions between the particles. Without saying anything useful we can
write (

∂

∂t
+

p

m
· ∇r + F · ∇p

)
f(r,p, t) =

(
∂f

∂t

)
coll

(2.3)

with (∂f/∂t)coll the rate at which the volume element d3rd3p is populated due to the
collisions. This equation does not have a prediction for what (∂f/∂t)coll is, and simply
posits there must be a term accounting for collisions. Eq. 2.3 can be rewritten as

∂f

∂t
=

(
∂f

∂t

)
stream

+

(
∂f

∂t

)
coll

(2.4)

with (∂f/ ∂t)stream = − p
m · ∇r − F · ∇p. This term is often called the ‘streaming’ term, as

particles are streaming into or out of a region without regard to the collisions. Without an
estimate of (∂f/ ∂t)coll, we can make no further progress.

We’ll soon discuss the BBGKY hierarchy, which will put this term on a more clear theo-
retical footing. However, at the moment we must derive an approximation for the form of
(∂f/∂t)coll. In particular, we can compute

• Rout(t, r,p)dtd3rd3p = # of collisions involving a particle at t initially at r with
momentum p within dtd3rd3p.

• Rin(t, r,p)dtd3rd3p = # of collisions involving a particle at t ending at r with mo-
mentum p within dtd3rd3p.

This means we can write(
∂f

∂t

)
coll

= # of particles driven into location and momentum

r and p due to a collision at t (within d3rd3pdt)

= Rin −Rout (2.5)

Now we must simply estimate Rin and Rout.
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2.1.3 Estimating the effects of collisions

First, we assume that collisions are binary (i.e. there is never a collision where a third
particle has any affect whatsoever). This is the assumption the gas is dilute. That means
the collision term can only depend on the properties of two particles at a time: (∂f/∂t)coll is
a function of t, particle 1’s state r1 and p1, and particle 2’s state r2 and p2. If the interaction
is extremely short ranged, the particles must occupy the same position (r1 = r2 = r), but
can have different momenta. This means we can write

Rout(r,p, t) =

∫
d3pinit1 pinit2 d3pfinal1 d3pfinal2 Pc(p

final
1 ,pfinal2 |pinit1 ,pinit2 ; r, t)

×P0(pinit1 ,pinit2 ; r, t)× δ(pinit1 − p)

Rin(r,p, t) =

∫
d3pinit1 pinit2 d3pfinal1 d3pfinal2 Pc(p

final
1 ,pfinal2 |pinit1 ,pinit2 ; r, t)

×P0(pinit1 ,pinit2 ; r, t)× δ(pfinal1 − p)

where Pc(p
final
1 ,pfinal2 |pinit1 ,pinit2 ; r, t) is the conditional probability of finding two parti-

cles with momenta {pfinal1 ,pfinal2 ]} given they started with momenta {pinit1 ,pinit2 }, and
P0(pinit1 ,pinit2 ; r, t) is the joint probability of actually seeing those initial conditions. These
equations state that the in- or out-rates can be determined by integrating over the con-
ditional probability of finding a final state given an initial state with a constraint on one
initial or final momentum (respectively).

We still haven’t done much, since we don’t know anything about the conditional or prior
probabilities. One final approximation we can make is that the prior probabilities are
uncorrelated:

P0(p1,p2; r, t) ∝ f(r,p1, t)f(r,p2, t) (2.6)

This means the odds of finding two particles with the given momenta simultaneously in
the same place is simply the product of the odds of finding one particle there, times the
probability of finding the other there without regard for the presence or absence of the first
particle. This is referred to as the ‘molecular chaos’ assumption by Boltzmann (note this
term has nothing to do with modern chaos theory), and is essentially a statement that the
joint probability is unaffected by the collisions at equilibrium. We still need to account
for the conditional probability of taking {pinit1 ,pinit2 } → {pfinal1 ,pfinal2 }. We cannot know
this without specifying the interaction, so we must again make an approximation. We
simply state that the total kinetic energy and total momentum must be conserved during
the collision, so that

Pc(p
final
1 ,pfinal2 |pinit1 ,pinit2 ; r, t) = δ(Einit − Efinal)δ(Pinit −Pfinal)g(Pinit,Pfinal) (2.7)



CHAPTER 2. KINETIC THEORY (PRIMARILY FOLLOWING HUANG CH 3-4) 32

where Pinit = pinit1 + pinit2 and Einit = [(pinit1 )2 + (pinit2 )2]/2m (and similarly for final).
g(P,P′) is an unknown scattering function that depends on the specific interaction be-
tween the particles, and here we simply assume it is a function solely of the initial and final
momenta and is reversible, so g(P,P′) = g(P′,P). The assumption of reversibility is true
classically for point particles interacting with a pair potential, and for quantum systems
where collisions are specified by a transition matrix between different energy and momen-
tum states (which is reversible). For mesoscopic systems composed of soft, deformable
materials, the assumption of reversibility may be violated. Regardless, without specifying
the interactions further it is not possible to reduce g(P,P′), and we will simply assume
reversibility is held.

Combining all of these approximations, we have(
∂f

∂t

)
coll

∣∣∣∣
r,p1,t

=

∫
d3p2d

3p′1d
3p′2δ(Ef − Ei)δ(Pf −Pi)gif (f ′1f

′
2 − f1f2) (2.8)

where the integral is over one initial and two final conditions (note that there is no
∫
d3p1

in eq. 2.8). In eq. 2.8, f1 = f(r,pinitial1 , t), f2 = f(r,pinitial2 , t), f1 = f(r,pfinal1 , t), and

f2 = f(r,pfinal2 , t). In order to produce this symmetric form of f ′1f
′
2 − f1f2, we also used

the fact that g(P,P′) = g(P′,P). While the utility of this approach may be somewhat
unclear, what we’ve done is reduce the left-hand and right-hand sides of eq. 2.3 in terms
of the distributions f(r,p, t).

2.1.4 The Boltzmann Transport Equation at Equilibrium

A remarkable simplification occurs at thermal equilibrium, where the macroscopic details
of the system must be time independent. This means the distribution f(r,p, t) cannot
depend on time, otherwise there would be global density or energy fluctuations. If we also
assume there is no external force (just internal collisions), the distributions can further not
depend on position, since otherwise there would be global density variations (we assume
the volume is large and at equilibrium the system will be homogeneous). Note: you’ll
address the inclusion of a force in the homework. Inter-particle collisions only affect the
momentum through the unknown g(P,P′), so f(r,p, t)→ f0(p) at equilibrium.

These constrains mean the left hand side of eq. 2.3 is necessarily zero. That means the
right hand side must vanish, so either g ≡ 0 or

f0(p1)f0(p2) = f0(p′1)f0(p′2) (2.9)

where the pi’s and p′i’s must have non-zero transition probability. This is a conservation
law, since

log[f0(p1)] + log[f0(p2)] = log[f0(p′1)] + log[f0(p′2)] (2.10)
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for any final states of the system. The conservation law can only depend on the momenta
of the system (since no other variables arise), and the only conserved quantities for this
system are the energy ∝ p2 and the momentum ∝ p. Thus, it must be that

log[f(p)] = −A p2

2m
−B · p− C (2.11)

for some unknown scalars A and C, and an unknown vector B. If higher order terms
were to be included, they would necessarily be conserved quantities. Since there’s no
additional conserved quantities beyond E and p, this is the final form of the equilibrium
distribution.

Since we know that∫
d3p f(p) = N

∫
d3p

p2

2m
f(p) = εN

∫
d3p pf(p) = N〈p〉 = 0 (2.12)

with ε the average kinetic energy per particle and 〈p〉 the average momentum per particle.
The calculation of A, B and C is most easily done by computing 〈p〉 first, where we can
show∫

dpxdpydpzpe
−Ap2/2m−B·p−C =

∫
dpxdpydpzpe

−A/2m(p−mB/A)2+mB2/2A−C

=

∫
dpxdpydpzpe

−A/2m(p−mB/A)2+mB2/2A−C

= emB2/2A−C
∫
dpxdpydpz

(
p +

mB

A

)
e−Ap

2/2m

= (2π)3/2

(
m

A

)5/2

emB2/2A−CB (2.13)

where the first equality comes from completing the square. This expression looks quite
ugly, but we can immediately see that it implies that each component of B = 0. In that
case, we can readily evaluate

N =

∫
d3pe−Ap

2/2m−C = e−C
(

2πm

A

)3/2

(2.14)

Nε =

∫
d3pp2e−Ap

2/2m−C = e−C
3

2A5/2

(
2πm

A

)3/2

(2.15)

Tedious algebra shows that A = 3/2ε and e−C = N(3/4πmε)3/2, yielding

f0(p) = N

(
3

4πmε

)3/2

exp

(
− 3p2

4mε

)
(2.16)
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where ε is the energy per particle. This result was remarkable at the time, because it
reproduced the previously computed Maxwell distribution in the presence of collisions
quite naturally. The equipartition theorem (which we’ll discuss in detail later) states that
ε = 3kBT/2 and was known (but was based on kinetic theory and thus not widely accepted)
at the time. This gives what is now called the Maxwell Boltzmann distribution,

f0(p) = N

(
1

2πmkBT

)3/2

exp

(
− p2

2mkBT

)
(2.17)

= N

(
β

2πm

)3/2

exp

(
− βp2

2m

)
(2.18)

for monatomic atoms. This distribution differs for diatomic atoms or more highly struc-
tured atoms (where ε 6= 3kBT/2), but the general functional form in eq. 2.16 is predicted
regardless of the relationship between temperature and energy.

2.2 Boltzmann’s H-Theorem

In the previous section, we showed that a solution to the Boltzmann Transport Equation
is the Maxwell Distribution. A critique at the time, and a fair question, is whether it’s the
only solution. After all, perhaps the Maxwell distribution is one of many solutions, and
that at equilibrium another more complicated solution naturally emerges. Is it guaranteed
that f(r,p, t) → f0(p) as t → ∞? Boltzmann addressed this question in his H-theorem,
which defines a clever function

H(t) =

∫
d3p f(p, t) log[f(p, t)] (2.19)

In this, we are assuming a uniform distribution in position (so f(r,p, t) = f(p, t)), but
that is not required (Reichl’s book has a more complete proof, p. 681). It’s straightforward
to see that

dH

dt
=

∫
d3p

∂f(p, t)

∂t

(
1 + log[f(p, t)]

)
(2.20)

and we know that ∂f(p, t)/∂t = (∂f/∂t)coll in the absence of an external force for a
spatially homogeneous distribution. Based on eq. 2.8, we can write

∂f(p, t)

∂t
=

(
∂f

∂t

)
coll

(2.21)

=

∫
d3p2d

3p′1d
3p′2δ(Ef − Ei)δ(Pf −Pi)gif (f ′1f

′
2 − f1f2) (2.22)
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Reverse initial/�nal label

Sign Flip

Reverse particle label

Initial Sign

Initial collision

Initial Sign

-

-

-

-

Time-reversed Sign

Sign Flip

Figure 2.2: Permutations that do not alter the statistics of scattering. Each has equal
probability of occurring. We can swap the labels of particles 1 and 2 with no change. We
can swap the direction of the momenta, flipping the sign of the streaming term. We can
swap the ‘initial’ and ‘final’ labels, again flipping the sign of the streaming term. Each of
these contribute to eq. 2.23-2.26.

It’s convenient to write (∂f/∂t)coll in four different ways, for reasons we’ll see in a moment.
These will be the original definition, a permutation of p1 and p2, a permutation of pi and
p′i, and a time-reversal. These are shown in Fig. 2.2,

∂H

∂t
=

∫
d3p1d

3p2d
3p′1d

3p′2(f ′1f
′
2 − f1f2)(1 + log[f1])δEiEf δPiPf gif (2.23)

∂H

∂t
=

∫
d3p1d

3p2d
3p′1d

3p′2(f ′1f
′
2 − f1f2)(1 + log[f2])δEiEf δPiPf gif (2.24)

∂H

∂t
=

∫
d3p1d

3p2d
3p′1d

3p′2(f1f2 − f ′1f ′2)(1 + log[f ′1])δEiEf δPiPf gif (2.25)

∂H

∂t
=

∫
d3p1d

3p2d
3p′1d

3p′2(f2f1 − f ′2f ′1)(1 + log[f ′2])δEiEf δPiPf gif (2.26)

Summing these four terms yields

4
∂H

∂t
=

∫
d3p1d

3p2d
3p′1d

3p′2(f ′1f
′
2 − f1f2)(log[f1f2]− log[f ′1f

′
2]) (2.27)

There are two immediate observations that one can make:

• ∂H/∂t ≤ 0, because f ′1f
′
2 − f1f2 has the opposite sign of log(f1f2)− log(f ′1f

′
2).

• ∂H/∂t = 0 only when f1f2 = f ′1f
′
2. This is the condition we used to derive the

Maxwell-Boltzmann distribution.
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Thus, convergence to the Maxwell Boltzmann distribution is guaranteed, regardless of the
initial conditions of the system. Boltzmann identified −H(t) as a non-equilibrium measure
of entropy, because it is monotonically increasing and attains its maximum at equilibrium.
The initial value of H will be determined by the initial conditions of the system: what
the initial distribution f(p, t = 0) was. As time evolves, it will eventually settle on the
equilibrium distribution f(p, t =∞) = f0(p), at which point the function −H necessarily
attains its maximum. The entropy of the system of the system evolves as

S(t) = −H(t) = −
∫
d3pf(p, t) log[f(p, t)] (2.28)

Any system of interacting particles (satisfying molecular chaos) will eventually settle on
the Maxwell Boltzmann distribution

f(p)

N
=

(
3

4πmε

)3/2

e−3p2/4mε (2.29)

=

(
1

2πmkBT

)3/2

e−p
2/2mkBT for monatomic molecules (2.30)

where the last equality comes from the (as yet unproven) equipartition theorem that each
particle has energy ε = 3kBT/2.

Note that for ε → 0, Eq. 2.29 becomes a δ− function, and H → +∞ (you can confirm
this directly in the homework), while for ε→∞ Eq. 2.29 becomes a uniform distribution
and H → −∞. This continuum representation of the energy thus permits any value of
−∞ < S = −H < +∞, unless the total energy is constrained to some finite value. Note
that this actually violates the third law of thermodynamics, which states at absolute zero
temperature the entropy reaches a finite minimum: in the limit of T → 0 in eq. 2.30
converges on ε → 0, and thus S → −∞. This was not a critique of the system at the
time (as the third law of thermodynamics was first formulated in ∼ 1910), but illustrates
a fundamental failing in the continuum representation of a statistical system that will only
be repaired by incorporating quantum mechanics. Regardless of its failings, the H theorem
was the first connection between an atomic theory of gasses and the concept of entropy,
and was heavily debated in the scientific community for decades prior to Boltzmann’s
death.

2.3 Liouville’s Theorem

Boltzmann’s transport equation and H-theorem were a bridge between thermodynamics
and the atomistic theory of gasses, and gives a meaningful, useful interpretation of the
entropy of a system in terms of the distribution of particle velocities. These depended on



CHAPTER 2. KINETIC THEORY (PRIMARILY FOLLOWING HUANG CH 3-4) 37

a number of approximations, all of which have an accuracy that is difficult to evaluate.
Are all of them reasonable? Can we determine the correct value of (∂f/∂t)coll exactly?
A method exists called the BBGKY Hierarchy (developed between 1935-1946, over 75
years after Boltzmann’s work) allows us to answer those questions. The BBGKY method
relies on an older and important result of Liouville’s in ∼ 1845, which will explore in this
section.

The Boltzmann transport equation begins and ends with single particle distribution func-
tions, f(r,p, t), with multi-particle correlations completely neglected. This is a reasonable
approximation for a dilute gas, but certainly incorrect in general. In order to understand
the behavior of real multi-particle systems, we need to begin by considering the behavior of
all particles simultaneously (something we actively avoided in the previous sections).

We consider a system of N particles, with the ith particle having generalized momentum
pi and generalized coordinates qi, interacting with a Hamiltonian H. These particles exist
in phase space Γ that encompasses all possible values of {pi, qi}. Within the phase space,
there will be a function ρ({pi, qi}, t) describing the probability of finding a particle at
any 6N + 1 dimensional point in the system. The density in phase space is evolving
in time, but volumes must be conserved: a particle may move from a state ({pi, qi}, t) to
({p′i, q′i}, t+δt), but particles may not appear or disappear. This means

∫
d3rd3pρ(r,p, t) =

1 is a constant.

The fact that particles cannot disappear implies there must be a continuity equation that
the system satisfies. The continuity equation can be understood most easily in 1+1 dimen-
sion instead of all 6N + 1 dimensions. Suppose we have N � 1 particles distributed along
the x axis, with time-varying density ρ(x, t). We can define a domain between points a and

b, such that at time t the number of particles within the domain is
∫ b
a dxρ(x, t). The number

of particles leaving the domain is −∂/∂t
∫ b
a dxρ(x, t) (the minus sign because they’re exit-

ing). Of course, any particles leaving the domain must do so at the boundary; the number
of particles crossing the boundary at b is ẋ(b, t)ρ(b, t) and at a is −ẋ(a, t)ρ(a, t), so the total

number leaving by crossing the boundary is ẋ(b)ρ(b)− ẋ(a)ρ(a) =
∫ b
a dx∂/∂x(ẋρ).

In higher dimensions, the continuity equation has the same features: the rate of change of
the density of particles in the domain must match the flux of particles across the boundary.
For an arbitrary set of generalized coordinates, x = {pi, qi}, we can write

−
∫
V

∂ρ

∂t
dV =

∫
∂V
ρ(ẋ · n̂)ds =

∫
V
∇ · (ρẋ)dV (2.31)

for any domain V . The second equality is Gauss’ divergence theorem (the multidimensional

version of f(b)−f(a) =
∫ b
a dxf

′(x)). We know that
∫
V dV (ρ̇+∇·(ẋρ)) = 0 for any arbitrary

domain V , which can only be true if the argument of the integral is itself identically zero.
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This leads to the continuity equation

∂ρ

∂t
+∇ · (ρẋ) = 0 (2.32)

The continuity equation is important in many branches of physics: it underlies much of
fluid mechanics and can be derived in any system for which a quantity can evolve in time
without being created or destroyed.

Our continuity equation can be reduced further because we have a system of particles
that are evolving under a Hamiltonian H, where the coordinates satisfy the equations of
motion

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
(2.33)

The continuity equation is

−∂ρ
∂t

=
3N∑
i=1

(
∂(ρq̇i)

∂qi
+
∂(ρṗi)

∂pi

)
(2.34)

=
3N∑
i=1

(
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

)
+ ρ

3N∑
i=1

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
(2.35)

and using the equations of motion we can cancel the last term, yielding

∂ρ

∂t
+

3N∑
i=1

(
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

)
= 0 (2.36)

The second term is often referred to as a Poisson bracket

[ρ,H] =
∑
i

∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi
(2.37)

Note that the Poisson bracket has the same notation as the anticommutator [ρ̂, Ĥ] =
ρ̂Ĥ + Ĥρ̂ in quantum mechanics. We will see later in the course that this overuse of
notation is not accidental, and that the total derivative of the density operator ρ̂ will
satisfy dρ̂/dt = ∂ρ̂/∂t+ [ρ̂, Ĥ].

Note that eq. 2.36 is the definition of the total time derivative of the system,

dρ

dt
=
∂ρ

∂t
+
∑
i

∂ρ

∂qi

∂qi
∂t

+
∂ρ

∂pi

∂pi
∂t

(2.38)

implying that any system describable by a classical Hamiltonian conserves density in phase
space. Note this doesn’t mean it conserves shape: a nonlinear Hamiltonian can still produce
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chaotic dynamics, and nearby volumes of phase space may not be anywhere close to one
another in phase space after time has passed. A system evolving from some volume in phase
space may eventually reach a highly irregular and stretched shape, but it is necessarily of
the same volume (since probability density is preserved) regardless of how different the
shape is. That is: a system’s distance from nearby points in phase space can be arbitrarily
distant as time evolves, but there are constraints on that evolution dictated by the constant
density.

2.4 The BBGKY Hierarchy

The Boltzmann Transport equation was derived in a primarily heuristic manner, with a
number of approximations whose validity are unclear. It would be beneficial to recover
the Boltzmann Transport equation in an ‘exact’ manner to fully understand the validity of
the approximations underlying out work in the previous sections. The BBGKY Hierarchy,
named after Bogoliubov-Born-Green-Kirkwood-Yvon, relates the dynamics of the distri-
bution functions of s particles to the distribution functions of s + 1 particles exactly, by
computing averages from Liouville’s theorem. This hierarchy allows us to more completely
understand the underlying assumptions of the Boltzmann Transport equation.

2.4.1 An exact calculation of multi-particle distributions

As mentioned before, the full distribution in phase space is typically more information
than one might care to have: it is rare to need to know the probability of finding 1023

individual particles in a very specific state. Typically, one is going to be interested in
coarser quantities (e.g. the average energy of the system, or average momentum). By
average, we are taking the ‘ensemble’ average of a large system of particles, with

〈g({ri,pi}, t)〉 =

∫ ∏
i

d3pid
3rig({ri,p}, t)ρ({ri,p}, t) (2.39)

defined as the average of any function g. In the literature, this is sometimes written
g{ri,pi}, t), but we will not use that notation in these notes. When taking an average,
we are weighting the value of g at any point in phase space by its probability of being
occupied by a particle at that point, ρ. If the N -particle distribution is sharply peaked
somewhere in phase space, the average of g will include contributions mostly from that
point in phase space, whereas if the distribution is uniform the average of g will have
significant contributions from everywhere in phase space.
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We can define a (unnormalized) 1-particle distribution function as

f1(p, r, t) =

〈 N∑
i=1

δ(ri − r)δ(pi − p)

〉
(2.40)

which measures the average number of particles with position r and momentum p at
time t. Note that we have slightly changed the notation from Sec. 2.1, where we had
f(r,p, t) = f1(r,p, t); f and f1 refer to the same quantities. Explicitly writing the average,
we find

f1(p, r, t) =

N∑
i=1

∫ ∏
j

d3rjd
3pjδ(ri − r)δ(pi − p)ρ({ri,p}, t) (2.41)

The delta function picks out a specific pair of coordinates ri and pi and fixes their value,
while the rest of the coordinates are integrated over. An important consideration arises if
the particles are all identical: their average behavior cannot depend on their index i. That
is, the statistics of a particle can’t depend on the fact that we labeled it “1”, or “2”, or any
other number. That means that we actually only need to do one integral! We can simply
hold the coordinates for particle “1” fixed, and integrate over the rest of the variables.
Every term of the sum in eq. 2.41 will be the same, so we need only multiply by N . In
this case, we have

f1(p1, r1, t) = N

∫ N∏
i=2

d3pid
3riρ({r,p}, t) (2.42)

which is number density of particles with the specific r− p point in space, without regard
to the index. Single-particle averages can be computed directly from this single-particle
distribution function (but one must normalize by N , converting the number density into a
probability):

〈g(r1,p1, t)〉 =

∫ N∏
i=2

d3pid
3rig({ri,p}, t)ρ({ri,p}, t) =

1

N

∫
d3rd3pg(r,p, t)f1(r,p, t)(2.43)

Note that the notation in Eq. 2.43 is sometimes used ambiguously in the literature, as
〈· · ·〉 often refers to an average over some of the variables in phase space, rather than all
of them. For example, when computing an average only over momentum, we can write
ḡ(r) = 〈g(r,p)〉r = 〈g(r′,p)δ(r′ − r)〉, which defines the notation 〈· · ·〉r as the average at
the point r. It is often the case that the subscript r may be left off of the brackets, and
the relation written ḡ(r) = 〈g(r,p)〉. In these cases, the fact that the left hand side has an
explicit r dependence implies that the average was taken solely over momentum, and not
over position. Most textbooks will eventually overload their notation in this way (Pathria
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and Huang both do so when they discuss quantum statistics), and these notes will likely do
so as well at points. When discussing averages, it is usually the case that the surrounding
text will explain over what the averaging is being taken, and the variables on which the
expression depends will tell you over what the averaging is not being taken.

This symmetry argument regarding index permutability actually holds for all possible
distribution functions. Suppose we want to compute the 2−particle distribution func-
tion

f2(r, r′,p,p′, t) =
N∑
i=1

N∑
j 6=i=1

〈
δ(ri − r)δ(rj − r′)δ(pi − p)δ(pj − p′)

〉
(2.44)

It once again doesn’t matter which particle labels we choose for i and j, they are all
equivalent. The sum is composed of exactly N × (N − 1) identical terms, so

f2(r1, r2,p1,p2, t) = N(N − 1)

∫ N∏
i=3

d3pid
3riρ({r,p}, t) (2.45)

In general, we can compute the s particle correlation function using the exact same argu-
ments

fs(p1, . . . ,ps, r1, . . . , rs, t) =
N !

(N − k)!

∫ N∏
i=s+1

d3pid
3qiρ({p, r}, t) (2.46)

The coefficients come from the number of permutations on each of the variables of integra-
tion.

2.4.2 Time evolution of the single particle distribution function

We have determined the unnormalized single particle density f1 = N
∫ ∏N

i=2 d
3rid

3piρ
in terms of the N -particle density ρ, and have determined an exact expression for the
time evolution of ρ through Liouville’s equation. This suggests we can determine an ex-
act expression for ∂f1(r,p, t)/∂t, which will lead us to the BBGKY Hierarchy. We can
compute

−∂f1

∂t
= − ∂

∂t
N

∫ N∏
l=2

d3rld
3plρ({r,p}, t) (2.47)

= −N
∫ N∏

l=2

d3rld
3pl
∑
i

(
∂ρ

∂ri
· ∂H
∂pi
− ∂ρ

∂pi
· ∂H
∂ri

)
(2.48)

This relationship does not easily reduce to a simpler form without making some assump-
tions about the form of the Hamiltonian.
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2.4.3 Central force interactions and the single particle distribution func-
tion

For a simple, central force interaction between particles, we can construct a useful repre-
sentation of fs. We take the specific Hamiltonian

H =
∑
i

p2
i

2m
+
∑
i

U(ri) +
∑
i<j

v(|ri − rj |) (2.49)

which includes an external and inter-particle force U and v respectively. Note the sum
over interactions is i < j, meaning we do not double-count interactions between pairs.
This Hamiltonian features an external force applied to each particle Fi = −∇U(ri), as well
as an interaction force between pairs of particles kij = −∇riv(|ri − rj |). Note that this
immediately implies kji = −kij .

For this Hamiltonian, Liouville’s theorem implies

−∂f1

∂t
= −N

∫ N∏
l=2

d3rld
3pl
∑
i

(
∇riρ · ∇piH −∇piρ · ∇riH

)
(2.50)

= N

∫ N∏
l=2

d3rld
3

[∑
i

(
pi
m
· ∇ri + Fi · ∇pi

)
+
∑
i 6=j

kij · (∇pi −∇pj )

]
ρ(2.51)

The last term arises from the fact that each term in the sum
∑

i<j v(ri− rj) produces two
contributions to the sum

∑
ij Fi · ∇pi , a term kij · ∇pi and a term −kij · ∇pj . Note that

the first terms in the square brackets in eq. 2.51 are streaming terms for each particle as
they appear in the Boltzmann transport equation in Eq. 2.3 (for all particles i). Unlike the
Botlzmann transport equation, though, this expression depends on the full particle density
ρ, rather than f1 or the unknown (∂f/∂t)coll. We will want to reduce this to a single or
pair particle distribution f1(r,p, t) or f2(r, r′,p,p′, t). To do so, we’ll have to integrate
over many all-but-one or all-but-two variables.

2.4.4 Boundary conditions on ρ

Before starting to do those integrals in eq. 2.51, it’s useful to realize that integration of a
gradient in a multi-dimensional space reduce to an evaluation of the function at a boundary.
A simple example is∫ b

a
dx

∫ b

a
dy

∂

∂y
f(x, y) =

∫ b

a
dx

(
f(x, b)− f(x, a)

)
(2.52)

so integration over a partial derivative evaluates to a function at a boundary. This is
important, because we don’t expect any particles to be found precisely at the boundary of
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our phase space. That is, we don’t expect to find particles that have infinite momentum,
nor do we expect any particles to be found exactly at the boundary. In a multidimensional
space, we expect that∫

Γ

∏
i

d3rid
3pi ∇rkρ =

∫
Γ

∏
i

d3rid
3pi ∇pkρ = 0 (2.53)

Impenetrable

Barrier

Repulsion 

range

(A) (B)
Boundary elements

Volume

Figure 2.3: (A) Particles can’t occupy a boundary due to the repulsive forces between the
particle and a boundary. They must interact with hard-core repulsion, and thus cannot
occupy the same volume. (B) For a fuzzy boundary, the probability of being found on the
edges (yellow) instead of in the volume (cyan) is low if the width of the edges is small.

You may immediately believe that exactly zero particles have infinite momentum, but find
it questionable that exactly zero particles are found precisely at the boundary. Physically,
one expects there to be a finite distance of closest approach to a barrier (depicted in Fig.
2.3(a)), so that there’s a vanishingly small probability of finding a single particle exactly
at the barrier. However, you’d be correct to recognize that we have not actually specified
what our ‘boundary’ actually is, and thus have therefore not declared what the range of
repulsion is. Rather than specifying an interaction range, suppose we have a particle size
δr, such that the system can be divided into binds of size δr3, with the boundary elements
occupying only a volume Aδr/V (where A is the surface area of the region), depicted in Fig.
2.3(B). The probability that a single particle is not found in the boundary is 1−Aδr/V , so
the probability of all N particles not being found on the boundary is (1−Aδr/V )N . With
ρ = N/V the density of the gas, the probability of no particles being found in a boundary
element is (

1− Aδr

V

)N
=

(
1− ρAδr

N

)N
→ e−ρAδr (2.54)

in the limit of N → ∞. That is, for a dilute gas (ρ → 0), the probability of seeing no
particles near the boundary to be ≈ 1, and the probability of finding a particle within the
fuzzy boundary width is 1−e−ρAδr ≈ ρAδr. However, if the gas is very dense (ρ→∞) the
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probability of particles being found in the boundary elements can become non-negligible.
In the former limit, it is not necessary to specify the particular interaction between the par-
ticles and the walls. In the latter limit, it’s more important to understand the interactions
between the particles and the boundary. Those interactions between particle and boundary
will specify the distance of closest approach between particles and the wall. Regardless of
the density, one still expects that an ‘impenetrable’ wall will have a non-zero distance of
closest approach.

2.4.5 Deriving the collision term

Eq. 2.53 implies that if we integrate over the particles {s, s + 1, . . . , N − 1, N}, any term
that involves a gradient of ρ with respect to rk or pk will vanish if k ≥ s (because it
will evaluate to the particle density at the boundary). Specifically, if we want to compute
f1(r1,p1, t), we can write

−∂f1

∂t
= N

∫ N∏
l=2

d3pld
3rl

[(
p1

m
· ∇r1 + F1 · ∇p1

)
ρ+

N∑
j=2

k1j(∇p1 −∇pj )ρ (2.55)

+

N∑
j=2

(
pj
m
· ∇rj + Fj · ∇pj

)
ρ+

N∑
j,l≥2

kjl(∇pj −∇pl)ρ

]
(2.56)

where the underlined portions include derivatives involving rs and ps with s > 1. Those
terms are all identically zero! This allows us to simplify(

∂

∂t
+

p

m
· ∇r + F · ∇p

)
f(r,p, t) = (2.57)

−
∫
d3r2d

3p2k1,2(r1, r2)∇p1f2(r1, r2,p1,p2, t)

where the last integral accounts for the integral over rs and ps for s > 2 to result in a term
involving f2(r1, r2,p1,p2, t). We can’t integrate over both p2 and r2, since kij depends on
r2, and can thus not reduce this integral further (in terms of pair distribution functions).
The left hand side of Eq. 2.57 is identical to Eq. 2.3, meaning the streaming term in the
Boltzmann equation is in fact(

∂f

∂t

)
coll

= −
∫
d3r2d

3p2k1,2(r1, r2)∇p1f2(r1, r2,p1,p2, t) (2.58)

where k12(r1, r2) = ∇r1v(|r1−r2|) is the force by r2 on r1. We originally derived (∂f/∂t)coll
in terms of initial and final momenta (in a very imprecise way). Eq. 2.58 does not reference
a final state (since that’s dictated entirely by the Hamiltonian), but represents the effect
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of the collision term exactly. The only assumptions made in this analysis is that (a)
there’s a central force interaction between particles and (b) no particles stick to the walls.
Everything else has been exact and without loss of generality.

Eq. 2.57 represents the first term in the BBGKY hierarchy. At this first level, there is
an exact relationship between the one-point particle distribution function and an unknown
two-particle distribution function. If we knew f2 exactly, we could compute f1 exactly.
As the name BBGKY ‘hierarchy’ suggests, there are other levels of the hierarchy. It is
tedious (see Huang for details) to show that f2 can be written exactly in terms of f3, the
three-particle distribution function. In this, we do not go into the details (which can be
found in Huang), but the fundamentals of the calculation[

∂

∂t
+

2∑
j=1

(
pj
m
· ∇rj + Fj · ∇pj

)
+ k12 · (∇p1 −∇p2)

]
f2(r1, r2,p1,p2, t)

= −
∫
d3p3d

3r3(k13 · ∇p1 + k23 · ∇p2)f3(r1, r2, r3,p1,p2,p3, t) (2.59)

which expresses f2 in terms of f3, which we don’t know either.

This process can be continued indefinitely, and we can continue the BBGKY Hierarchy to
solve for f3 in terms of f4, and so on. It’s possible to compute any k−particle distribution
function in terms of an unknown k+ 1−particle distribution. It is tedious to show that the
s-particle distribution satisfies[

∂

∂t
+

s∑
i=1

(
pi
m
· ∇ri + Fi · ∇pi

)
+

s∑
i,j=1

kij · (∇pi −∇pj )

]
fs (2.60)

= −
s∑
i=1

∫
d3ps+1d

3rs+1ki,s+1 · ∇pifs+1 (2.61)

In order to make progress at any level of the hierarchy, we’ll need to create a closure
relationship, such that we can truncate the hierarchy. For example, if we were to have a
good approximation for fn, we would then be able to determine fn−1 followed by a chain
of solutions down to f1. There are a variety of possible closure relations that can be used
to truncate the hierarchy. There are a variety of closure relations that exist, although
they will generally be good approximations for low density gasses (for which higher order
correlations are expected to not be important). The BBGKY approximation is exact for
central force problems, and allows us to identify exactly where an approximation comes in:
through the closure of the hierarchy.

In order to recover the Boltzmann transport equation, we must impose a closure relation
to be able to determine f2. Perhaps the simplest approximation that can be made is
that the 3-particle ‘collision term’ in eq. 2.59 is negligible, with

∫
d3p3d

3r3(k13 · ∇p1 +
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k23 · ∇p2)f3(r1, r2, r3,p1,p2,p3, t)] ≈ 0. This first approximation is more precise than
the heuristic assumptions we made about the collisions in a dilute gas or that ‘molecular
chaos’ is satisfied. A further approximation is to assume that we are near equilibrium, so
that ∂f2/∂t ≈ 0 (in fact, this is a statement that the equilibration of f2 occurs on a faster
timescale than f1, as argued by Huang). Finally, we simplify the problem by neglecting the
external potential U(ri) (so that Fi = 0; this is not a necessary approximation). Combined,
these imply that k12(r) · (∇p1 −∇p2)f2 ≈ (p1 · ∇r1 + p2 · ∇r2)f2/m = (p1 − p2)∇rf2/m,
where we have made the change of variables r = r1− r2 is the distance between the pair of
particles and R = (r1 +r2)/2 is the center of mass of the two particles. A final assumption
is that f2 is independent of the location of the center of mass (that is, the effect of a
collision doesn’t depend on where it happens, only how far apart the particles are). With
this approximation, we have reduced the second BBGKY equation to a separable form,
which implies we can write f2(r,p1,p2) = φ(r,p1)φ(r,p2). Because we are guaranteed
that φ ≈ f1 if the potential is short-ranged (that is: if there were no interactions the
particles would be randomly distributed), we have recovered the asumption of molecular
chaos: f2(r,p1,p2) ≈ f1(r,p1)f1(r,p2).

Combining these approximations, the collision term then becomes(
∂f1

∂t

)
coll

= −
∫
d3r2d

3p2k1,2∇p1f2(r1, r2,p1,p2, t) (2.62)

= −
∫
d3r2d

3p2k1,2(∇p1 −∇p2)f2(r1, r2,p1,p2, t) (2.63)

≈ − 1

m

∫
d3r2d

3p2(p1 − p2) · ∇rf1(r,p1)f1(r,p2) (2.64)

Note that the specific form of the direct interaction has been removed here (k12(r)) due
to the approximations we have made. Huang makes a lengthy calculation that this final
expression reduces to the Boltzmann Transport equation.

2.5 Summary

The kinetic theory of Boltzmann (and others before him) was fundamental in the philo-
sophical transition between thermodynamics and an atomistic model for the statistical
mechanics of atoms. Gasses are formed by an enormous number of interacting particles (a
claim not widely accepted in physics in 1865), and the H-theorem shows that the random
collisions between gasses must cause an inevitable convergence of the particle momenta dis-
tribution on the Maxwell Boltzmann distribution. The sometimes unclear approximations
underlying the H theorem are made more precise using the BBGKY hierarchy, which indi-
cate the fundamental assumptions are a dilute gas (with no triplet interactions) whose pair
correlations equilibrate rapidly. Importantly, Boltzmann connected the concept of particle
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momentum distribution to the idea of entropy in his H-theorem, which we will continue to
see in the future. Unlike the system energy or pressure, which we will continually find to be
proportional to mean particle properties, the entropy is related to the global distribution
of the particle properties, and not expressible in terms of the average properties of any
individual particle.

2.6 Homework Problems

1. What is the initial entropy of a system with all particles having the same initial
momentum, f0(p) = δ(p − p0)? Does Boltzmann’s H-function satisfy the third law
of thermodynamics?

2. A single classical particle in a volume V is at thermal equilibrium with a reservoir at
temperature T . Is it possible for this system to have a well defined entropy?

3. In this chapter, we neglected any external force an external force F = −∇V (r) in
the derivation of the Maxwell-Boltzmann distribution. We can demonstrate that the
equilibrium distribution is f(p, r) = f0(p)e−V (r)/kBT in the presence of a force by
doing the following:

(a) Show that this form of f(p, r) still satisfies the requirement that
(∂f/∂t)coll = 0.

(b) Show that (p/m·∇r+F·∇p)f(p, r) = 0 for f(p, r) = N
(2πmkBT )3/2

e−p
2/2mkBT e−V (r)/kBT .

4. Suppose a gas is composed of two types of particles, one with mass m and the
other with mass M , with fm(r,p, t) and fM (r,p, t) the distribution of momenta for
particles, respectively. There is no external force, and the scattering of the particles
depends only on their momentum (is independent of particle type). Show that the
Boltzmann transport equation in the limit of a dilute gas yields two coupled equations
at equilibrium for the distributions of the momenta:

fm(p′1)fm(p′2)− fm(p1)fm(p2) + fm(p′1)fM (p′2)− fm(p1)fM (p2) = 0(2.65)

fM (p′1)fM (p′2)− fM (p1)fM (p2) + fm(p′1)fM (p′2)− fm(p1)fM (p2) = 0(2.66)

where p1 and p2 are initial momenta and p′1 and p′2 are final momenta, and f(r,p, t)→
f(p) is independent of position and time.

5. One possible form for the time evolution of momentum distribution is
f(p, t) = A(t)e−(p−p0(t))2/2mε(t).

(a) Normalize the distribution and determine 〈p〉 and 〈p2/2m〉 in terms of p0(t)
and ε(t).
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(b) Determine S(t) = −H(t) explicitly. What are the constraints on p0(t) and ε(t)
for S(t) to be a strictly increasing function? In particular, does an increasing
S(t) require that 〈p〉 → 0 as t→∞?

6. Suppose a system is prepared with the exponential momentum distribution f(p, t =

0) = Ae−|p|
√

6/mε.

(a) Normalize this distribution and show that 〈p2/2m〉 = ε.

(b) Show that the entropy S(0) = −
∫
d3pf(p, 0) log[f(p, 0)] is always less than the

entropy for a Gaussian distribution with the same mean particle energy.

7. For a Hamiltonian H =
∑

i p
2
i /2m+

∑
i U(ri) +

∑
i>j v(|ri − rj |),

(a) Explicitly show that the total number of particles N =
∫
d3pd3rf1(r,p, t) is

constant in the first level of the BBGKY hierarchy.

(b) Defining n(r, t) =
∫
d3pf1(r,p, t), show that

∂n

∂t
+
N

m
∇r · 〈p〉r = 0 (2.67)

where 〈· · ·〉r is an average at position r. What does this imply if the momentum
distribution is spatially uniform?



Chapter 3

The Microcanonical Ensemble
(Pathria Ch 1)

Through the H-Theorem, Boltzmann was able to form a putative connection between
the momentum distribution f(p) of the particles in the system and the thermodynamic
entropy of the system. Regardless of initial conditions, a gas will necessarily adopt a
Maxwell-Boltzmann distribution (so long as it satisfies the assumption of ‘molecular chaos’
at any rate). This effect was not due to an external temperature, although we made a
hand-wavy link to the as-yet unproved equipartition theorem, ε = 3kBT/2, in the previous
chapter. Rather, the only constraint implied was that the mean kinetic energy was held at
some fixed value, 〈p2/2m〉 = ε. One might ask if a similar approach can be used in other
contexts, leading to the definition of the microcanonical ensemble.

3.1 The Microcanonical Ensemble

3.1.1 Global Constraints

Suppose we have a constraint on the total energy of a system of particles, with each particle
having an average energy 〈Ei〉 = ε and the total energy Esys = E = Nε for N particles
in the system. Here we have no requirement of a thermal reservoir, but rather a fixed
energy for the system without possibility of work begin done or energy being extracted
(a perfectly isolated system). The particles are permitted to be in any combination of
states so long as their total energy adds up to E. Note that this is different notation
than the thermodynamic U used in Ch 1. In this section, we will refer to the total energy
as E usually, to clearly denote that the energy is a fixed quantity in the microcanonical

49



CHAPTER 3. THE MICROCANONICAL ENSEMBLE (PATHRIA CH 1) 50

ensemble. However, E and U both refer to the total energy of the system.

For a discrete system, we can say nl particles are in the lth energy level, with energy εl,
while for a continuous system the particle density in state l with energy ε(l) is given by
n(l). As an example, the density of particles with energy p2/2m was f(p) in the Boltzmann
transport equation. In either case, we can immediately write

N =
∑
l

nl E =
∑
l

nlεl discrete (3.1)

(3.2)

These global constraints still permit a large number of possible states that each particle
occupies. For example, the constraints can be satisfied if N particles have the same energy
E/N , or alternatively if one particle has energy E and N − 1 particles have energy 0. This
means there will be a total number of states available to a system, Ω(E,N), which depends
solely on the global properties of the system.

3.1.2 Microstates and Equiprobability

In order to determine the statistics of such a system, we now assume that each microstate
is equally likely so long as it is consistent with the global constraints. The microcanonical
ensemble is the complete set of all microstates that satisfy the global constraints (that is,
any state that has N particles whose total energy is E is an element of the microcanonical
ensemble). That is, if we know only the number of particles and total energy, any possible
arrangement of the particles that satisfies those conditions just as likely to have occurred
as any other. For example, the microstates

1. All particles have energy E/N

2. Particle 1 has energy E, and the rest have energy 0

3. Particle 1 has energy 0, and the rest have energy E/(N − 1)

4. Particles 1 and 2 have energy E/2, and the rest have energy 0

5. Particles 1 and 2 have energy 0, and the rest have energy E/(N − 2)

This is not a full accounting of all possible microstates that satisfy the constraints, but
illustrates their equivalence. In some sense, it may seem counterintuitive that the first and
second microsates here are equally likely, since in one case there’s a huge energy associated
with one particle. However, as we have made no assumptions about the system other than
the fact that the total energy is E, there is no reason to treat the first two states as any
more or less likely. Each of these states can be grouped into indistinguishable microstates,
which are identical up to the particle labeling. For example
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1. N ways to arrange one particle with energy E, and the rest with energy 0

2. N ways to arrange one particle with energy 0, and the rest with energy E/(N − 1)

3. N(N −1)/2 ways to arrange two particles with energy E/2, and the rest with energy
0

4. N(N − 1)/2 ways to arrange two particles with energy 0, and the rest with energy
E/(N − 2)

In the first two cases, the counting comes from the N possible labels a single particle can
have. In the second two cases, the counting comes from the N labels the first particle has,
the N−1 labels remaining for the second particle, and a division by 2 because we can swap
the labels of the first and second particles. The reader will likely (and correctly) recognize
this is the number of ways to choose two elements from a list of N , with

(
N
2

)
ways to do so.

While each microstate is equally likely, there is variation in the likelihood of equivalent or
indistinguishable microstates: the third and fourth microstates are far more likely to occur
than the first and second by random chance, since there are (N − 1)/2� 1 more ways to
make those states.

3.1.3 Equilibration of two microcanonical systems

Suppose now we have two systems with energy and number of particles Ei and Ni re-
spectively. Those macroscopic constraints will be satisfied by Ωi(Ei, Ni) states for the two
systems. This perfectly general, and doesn’t depend on the specific interactions of the
systems. Suppose the two are brought together in contact such that the are not allowed to
exchange particles (so Ni is held fixed), but are allowed to exchange energy. The energy
of the entire system

Etot = E1 + E2 (3.3)

is conserved in this, but now the energies of the individual systems may change. The
exchange of energy occurs through heat flow between the two systems, with the heat dQ
a thermodynamic concept: we make no assumptions about the mechanism of the energy
exchange except that it does not change Ni. Because the system can exchange energy, E1

and E2 are allowed to vary, such that at equilibrium the final values of the energy in system
i will be Ēi. It is not necessary that the initial and final energy of each system is the same,
but it must satisfy the constraint of constant energy Etot = E1 + E2 = Ē1 + Ē2.

Prior to being brought together, there is no interaction between the systems and the
arrangement of particles between each system is

Ωtot(Etot) = Ω1(E1)Ω(E2). (3.4)
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Once they are brought into contact, the energy exchanged between the two systems does
not alter the number of possible microstates available to system, and they will remain is
statistically independent of one another as in eq. 3.4. The equal probability assumption
implies that the combined system will maximize its accessible states Ωtot(E), since all states
for the combined system are equally likely the system is most likely to be found in a state
with the largest number of equivalent states. That is, the final indistinguishable microstate
of the combined system will most likely be the one that have the greatest probability of
being found by random chance. Assuming this,

∂Ωtot

∂E1
=

∂[Ω1(E1)Ω2(E2)]

∂E1
(3.5)

=
∂[Ω1(E1)Ω2(Etot − E1)]

∂E1
(3.6)

= Ω2(E2)
∂Ω1

∂E1
− Ω1(E1)

∂Ω2

∂E2
(3.7)

At equilibrium, when the total number of accessible states Ω is maximized, we have
∂Ω/∂E1 = 0, implying

∂ log[Ω1]

∂E1

∣∣∣∣
E1=Ē1

=
∂ log[Ω2]

∂E2

∣∣∣∣
E2=Ē2

(3.8)

when evaluated at the equilibrium values of the energy, Ē1 and Ē2.

3.2 Entropy and the number of states

Eq. 3.8 has an interesting form, in that it equates derivatives of a quantity with respect to
energy. At equilibrium and for a reversible process, we have

TdS = dU + pdV − µdN (3.9)

where we have continued to use the thermodynamic notation for total energy U . For this
system at equilibrium, in the absence of heat flow and with N and V held fixed,

dU = TdS
1

T
=
dS

dU
(3.10)

so that if we were to postulate two thermodynamic systems brought into contact, eventual
equilibrium between them would imply that

dS1

dE

∣∣∣∣
Ē1

=
dS2

dE

∣∣∣∣
Ē2

(3.11)
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This is the definition of thermal equilibrium via the 0th law, which states two systems
brought into contact will eventually settle to have the same temperature. Recall that these
are isolated systems being brought together, and there is no heat bath at fixed temperature
to define T . Rather, the temperature of the system is defined through dS/dE.

Comparing eq. 3.8 and 3.11, we therefore have a possible relationship between the number
of microstates and the entropy of the system:

S ∝ log(Ω) S = kB log(Ω) (3.12)

where kB is Boltzmann’s constant. This is at the moment an arbitrary constant, but we’ll
see soon that it naturally contributes to the ideal gas law, which has been well studied.
We’ve seen that ∂ log(Ω)/∂E and ∂S/∂E are constant at equilibrium. We can also argue
the system is extensive by imagining dividing the volume V into many small subunits dv,
with M = V/dv small subvolumes that can contain particles. For the first particle, there
are M possible bins where the particle can be placed. If the gas is dilute or noninteracting,
there are also ≈ M bins in which the second particle can be placed, as well as the third,
and so on. The number of accessible states is then

Ω = MN ∝ V N log(Ω) ∼ N (3.13)

so that the entropy is extensive (at least in this simple case; in general we will still expect
the number of states of a system to grow exponentially with the size of the system). We
note that our definition of Ω(Etot) was determined by maximizing the number of accessible
states of the two sub-systems under the global constraint of the total energy. Since we’ve
performed a maximization, we are guaranteed that log(Ω(Etot)) ≥ log(Ω(E1))+log(Ω(E2)).
This would imply that S ≥ S1 + S2, consistent with the second law of thermodynamics.
Further, if we have a system with exactly one accessible state (so that Ω = 1), log(Ω) = 0.
This implies an absolute minimum of the entropy of a system, consistent with the third law
of thermodynamics. S = kB log(Ω) satisfies all laws of thermodynamics regarding entropy,
and is thus a plausible definition of entropy.

3.3 Other thermodynamic variables

There’s nothing terribly special about a wall permeable only to heat in our example. If we
imagine the volume can change (so that Vtot = V1 + V2 is fixed but Vi can vary), we can
perform the same analysis:

∂ log(Ω1)

∂V

∣∣∣∣
V̄1

=
∂ log(Ω2)

∂V

∣∣∣∣
V̄2

(3.14)
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so ∂ log(Ω)/∂V is constant. Likewise, if we let the barrier be permeable to the parti-
cles,

∂ log(Ω1)

∂N

∣∣∣∣
N̄1

=
∂ log(Ω2)

∂N

∣∣∣∣
N̄2

(3.15)

so ∂ log(Ω)/∂N is constant. The fundamental thermodynamic equation for our system
is

−dE + pdV − µdN = TdS = Td(log(Ω)) (3.16)

so we can readily identify the meaning of the constants in our statistical variations:

∂ log(Ω)

∂V
=

p

kBT

∂ log(Ω)

∂N
= − µ

kBT
(3.17)

Note that if Ω ∝ V N , then

p

kBT
=
∂ log(Ω)

∂V
=
N

V
pV = NkBT (3.18)

Again, our identification of S = log(Ω) readily reproduces the ideal gas law (sometimes
written as pV = nRT with n = N/NA and R = kBNA, and NA ∼ 6× 1023). The constant
associated with the ideal gas law has been well studied, and we can copy:

kB = 1.38× 10−23J/K = 8.62× 10−5eV/K (3.19)

At room temperature (298K),

kBT = 4.11× 10−21J = 4.11pN nm = 25.7meV (3.20)

These numbers are useful to remember to identify under what conditions you’ll need to
consider statistical mechanics in a system you’re looking at. The behavior of particles that
interact with strengths on the order of kBT may be significantly altered due to thermal
fluctuations. This is something we’ll talk about more later in the semester, but it is very
useful to remember one or more of these numbers depending on your field of research.

3.4 Accessible states for a Classical Ideal Gas

3.4.1 The volume of phase space

We’ve already seen that we naturally recover the ideal gas law PV = NkBT through the
connection that S = kB log(Ω) and for Ω ∝ V N . While it’s nice we can reproduce this well
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known result, we can significantly improve on this scaling argument with a more detailed
calculation of the number of states to exactly compute the entropy of a system. Classically,
we can do this by integrating over all possible configurations that satisfy the constraint of
fixed energy and number. In particular, we will have

Ω ∝
∫ ∏

i

d3rid
3pi δ

(∑
i

p2
i

2m
− E

)
= V N

∫
∑N
i=1 p

2
i=2mE

∏
i

d3pi (3.21)

= V N (2mE)3N/2

∫
∑N
i=1 x

2
i=1

∏
i

d3xi (3.22)

= V N (2mE)3N/2 ×
(

Surface area of 3N (3.23)

dimensional unit sphere

)
where the position integrals

∫ ∏
i d

3ri = (
∫
d3r)N = V N , and we wrote each component

of the momentum as p = x
√

2mE. All of the dimensionality of the volume of phase space
is contained within the leading term, with the integrals (equivalent to the surface area of
the unit sphere of 3N dimensions) not dependent on energy or volume, only on N . Note
that this has our expected scaling of V N included already, indicating we will be able to
successfully recover the ideal gas law.

In order to determine Ω, we must compute the surface area of a multidimensional sphere.
If we imagine we have a sphere of radius R in D dimensions, we know the surface area of
the sphere is AD = dVD/dR (since the volume can be computed by adding up shells of
area AD, with VD =

∫
dRdV

dR =
∫
dRAD(R)). Dimensionally, we are certain that we can

write VD = cDR
D, with some unknown numerical prefactor cD depending only on D. We

can compute this prefactor a clever trick:

πD/2 =

(∫
dxe−x

2

)D
=

∫ ∏
i

dxie
−

∑
i x

2
i =

∫
dVDe

−R2
=

∫
dR

(
DcdR

D−1

)
e−R

2

= cD
D

2
Γ

(
D

2

)
= cDΓ

(
D

2
+ 1

)
(3.24)

where in the last equation we performed a substitution u = R2 and recalled that
∫∞

0 dxxy−1e−x =
Γ(y). Then the volume of a d-dimensional sphere is then

VD(R) =
πD/2

(D/2)!
RD (3.25)

with (D/2)! = Γ(d/2 + 1). Thus, AD = DπD/2RD−1/(D/2)! = 2πD/2RD−1/(D/2 −
1)!.
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Having determined the surface area of the sphere, we can use its value to estimate Ω (which
is proportional to the surface area of the unit sphere with R = 1). We find

Ω ∝ V N (2mE)3N/2 3Nπ3N/2

(3N/2)!
(3.26)

The constant of proportionality is completely unknown at the moment, but we can recog-
nize that it must have the units required to make Ω nondimensional (since the number of mi-
crostates cannot have a dimension). Eq. 3.26 has dimensions of (length×mass1/2×energy1/2)=(energy×time).
We know of one physical constant that has precisely these units: planks constant h. We
can then nondimensionalize Ω by writing

Ω =
3Nπ3N/2

(3N/2)!

(
V (2mE)3/2

h3

)N
(3.27)

3.4.2 Justifying the appearance of Plank’s constant

An immediate and natural response to the inclusion of Plank’s constant is that it’s a
completely arbitrary choice. Any constant could be chosen so long as it has the correct
units, e.g. we could just as easily normalize by 1Js. We can make a quantum mechanical
argument for why Plank’s constant might appear. This treatment is not correct, in that
the we are ignoring the Pauli exclusion principle, and we will discuss quantum statistical
mechanics correctly in a later chapter. However, we can see the emergence of Planks
constant by considering a single particle trapped in an impenetrable cube of side L. The
eigenfunctions of the Schrödinger equation are

ψn(r) =

(
2

L

)3/2

sin

(
nxπx

L

)
sin

(
nyπy

L

)
sin

(
nzπz

L

)
(3.28)

whose energy is

En =
~2

2m
× π2

L2
(n2
x + n2

y + n2
z) =

h2

8mL2
(n2
x + n2

y + n2
z) (3.29)

If we imagine N particles that are noninteracting are placed in such a box, so that their
states are completely independent of one another (a terrible lie quantum mechanically, but
a good approximation at high temperature as we will see), the total energy of the system
is

E =
∑
n

En =
h2

8mL2

3N∑
i=1

n2
i (3.30)

Thus, the total number of states at an energy E for N particles in a volume V are the
number of integer solutions to the equation

∑
i n

2
i = 8mEV 2/3/h2. Note that Plank’s
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constant has naturally appeared in this calculation, rather than the arbitrary use in Eq.
3.27. We can count the number of states by writing

Ω =

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑
n3N

δ

(
h2

8mL2

∑
i

n2
i , E

)
(3.31)

with δ(x, y) the Kroniker delta function (δ(x, y) = 1 if x = y and 0 else). This is very
difficult to calculate as written, but we can convert this to a continuous representation
by writing an effective momentum p(n) = n × h/L. Note that p(n + 1) − p(n) = h/L =
dp � 1, with a constant spacing between momentum states that is very small as long
as L is large (which is true in the thermodynamic limit of V → ∞). We can then write∑

n f(n) = L/h
∑

n h/Lf(n) ≈ L/h
∫∞

0 dpf(p), converting the discrete sum to an integral.
Then

Ω =
L3N

h3N

∫ ∞
0

d3Npδ

(∑
i

p2

8m
− E

)
(3.32)

= V N

(
2mE

h2

)3N/2

2N
∫ ∞

0
d3Nxδ

(∑
i

x2
i − 1

)
(3.33)

= V N

(
2mE

h2

)3N/2 ∫ ∞
−∞

d3Nxδ

(∑
i

x2
i − 1

)
(3.34)

= V N

(
2mE

h2

)3N/2 ∫
∑
i x

2
i=1

d3Nx (3.35)

= V N

(
2mE

h2

)3N/2

×
(

Surface area of 3N -dimensional sphere

)
(3.36)

This is identical to eq. 3.23 except for the factor h−3N , which we added based on dimen-
sional arguments in eq. 3.27. While we have still not actually shown that this factor is
correct (because this quantum mechanical argument is false: Pauli exclusion is not satis-
fied), it at least suggests this factor is reasonable. The process we used to reduce a sum to
an integral will be repeated in later chapters.

3.5 Entropy, the Gibbs Paradox, and Indistinguishability

Having justified our nondimensionalization with a factor of h−3N , we can write a final
expression for the entropy from Eq. 3.27, with

S = kB log

[
3Nπ3N/2

(3N/2)!

(
V (2mE)3/2

h3

)N]
(3.37)
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= NkB log

[
V

(
2πmE

h2

)3/2]
− kB log

[(
3N

2

)
!

]
+ kB log(3N) (3.38)

≈ NkB log

[
V

(
2πmE

h2

)3/2]
− 3NkB

2
log

(
3N

2

)
+

3N

2
+ log(3N) (3.39)

≈ NkB log

[
V

(
4πmE

3Nh2

)3/2]
+

3NkB
2

+O

(
log(N)

)
(3.40)

where the first approximation is due to Sterling’s approximation and the second is due to
neglecting terms of order log(N). Both are acceptable for N →∞ (in the latter case, note
that log(1023) = 23 log(10) ≈ 53� 1023).

We can readily compute the temperature of this system knowing the entropy, with

1

T
=
∂S

∂E
=

3kBN

2E
⇒ E

N
=

3kBT

2
(3.41)

This is well known as the equipartition of energy that we mentioned in the previous chapter
without proof (we’ll prove it explicitly in the next chapter). From eq, 3.41, we immediately
see that

CV =
∂E

∂T

∣∣∣∣
NV

=
3NkB

2
(3.42)

which agrees with experimental results on monatomic gasses (but not all gases!). We also
see that

S = NkB log

(
V

λ3

)
+

3NkB
2

(3.43)

where the total system volume is scaled by an effective volume per particle λ−3, with

λ =
h√

2πmkBT
(3.44)

The emergence of this wavelength λ (having units of 1/distance) is physically relevant,
because it is the De Brogle wavelength, with λ ∼ h/p, for a particle with energy ∼ kBT .
We find for an ideal particle with energy on the order of kBT

kBT ∼ E ∼
p2

m
∼ h2

mλ2
→ λ ∼ h√

mE
(3.45)

where we have neglected dimensionless constants in this argument. λ is thus referred to
as the thermal wavelength of the gas, and we will find in the future this indicates whether
quantum effects are important: if λ� 1 the particles are effectively point-like and classical,
and if λ � 1 the statistics of the particles may be altered by quantum mechanics. This
sets a more precise meaning on what is dilute: if V � Nλ3, the gas is sufficiently dilute
that quantum effects are generally negligible because particles are well separated, but if
V . Nλ3 we may expect to see the quantum behavior of the particles playing a greater
role.
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3.5.1 Entropy of Mixing

Generally, we have focused on thermal equilibration between two systems in the previous
chapters. In this section, we’ll discuss the combining of two systems that begin at the
same temperature, but that are permitted to exchange particles. The systems are at
thermal equilibrium initially (with T1 = T2=const), but can exchange particles after they
are brought together before they reach chemical equilibrium. Each system has an initial
entropy

Si = NikB log

(
Vi
λ3
i

)
+

3NikB
2

(3.46)

where Ni is the number of particles in system i, Vi its volume, λi = h/
√

2πmikBT its
wavelength, and T its temperature (with no index on i, since the temperatures are the
same). After combining the two systems, the total entropy is

Stot = (N1 +N2)kB log(V1 + V2) +
3kB(N1 +N2)

2
− 3N1kB log(λ1)− 3N2kB log(λ2)

(you should work through the details of that calculation, which is provided as a homework
problem), and the entropy due to having combined the two systems is therefore

∆S = Stot − S1 − S2 = kB

[
N1 log

(
V1 + V2

V1

)
+N2 log

(
V1 + V2

V2

)]
≥ 0 (3.47)

This measures the excess entropy produced by combining the two systems. The entropy
production during the equilibration is expected to be positive, so thus far nothing has gone
wrong.

3.5.2 A paradox: an apparent failure of statistical mechanics

If we assume that our original systems were composed of identical particles (so m1 = m2)
and have the same density (so that N1/V1 = N2/V2 = (N1 + N2)/(V1 + V2)), we would
naturally expect that, at equilibrium, there should be absolutely no effect of bringing the
two independent systems into contact. Because the particles are identical and the systems
have the same density, an equal number of particles should move from system 1 to system
2 as they do from system 2 to system 1. Put another way, the chemical potential of each
system should be identical, since they are identical particles at the same density: there’s
no density difference to balance. There’s thus no reason for the entropy to increase, as the
systems are identical with or without a hypothetical partition dividing them into two, so
we should expect ∆S = 0. Where did we go wrong?
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The reason the systems are expected to be identical is that all particles are indistinguish-
able. If each particle were labeled, there would be a difference between the unified and
partitioned states, due to the fact that different unique particles can move between the
volumes in the unified system. For indistinguishable particles, the system of origin of any
particle cannot be identified and we can only look at the number density, which is constant
if N1/V1 = N2/V2. That means when we computed the entropy of the combined system,
we overcounted the number of states accessible.

We can recover the expected statistics by recognizing that we overcounted the number of
states Ω, because we implicitly assumed the particles were identical. When we wrote the
integral

∫ ∏
i d

3rid
3piδ(E −

∑
i εi), we assigned a label to each particle (with ε1 referring

to the energy of the first particle, ε2 the energy of the second, and so on). If the particles
are indistinguishable we must remove the overcounting due to the equivalent microstates.
There are N ! was to assign labels to our particles, which lets us normalize the number of
states without difficulty. We therefore can write

Ωdisting =

∫ ∏
i

d3pid
3ri

h3
δ

(
E −

∑
i

εi

)
Ωindisting =

1

N !

∫ ∏
i

d3pid
3ri

h3
δ

(
E −

∑
i

εi

)
(3.48)

to account for the difference between distinguishable and indistinguishable particles. In
particular, this means

Sindisting = Sdisting − kB log(N !) (3.49)

≈ NkB log(V λ−3) +
3NkB

2
− kB

(
N log(N)−N

)
(3.50)

= −NkB log(ρλ3) +
5NkB

2
(3.51)

for the fixed density ρ. Note that this quantity is extensive for a constant density: neither
ρ nor λ will be proportional to N , so S ∼ N explicitly. The division by N ! will continue
to be necessary in later chapters for indistinguishable particles.

3.6 Summary

In Chapter 2, the kinetics of particles were used to describe the statistics of a dilute gas,
partially recovering some of the features expected of thermodynamics by constraining the
energy per particle of the system. In this chapter, we have applied this same constraint to an
idealized system to show that the entropy is thermodynamically defined to be log(Ω) with Ω
the number of accessible states. While Ω is difficult to compute in general, we found for an
ideal gas (both classically and using the quantum cube well energy levels) that this approach
reproduces all thermodynamic laws and relationships we saw in Chapter 1 at equilibrium,
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and in some cases greatly simplifies the calculation of certain quantities. In particular,
the equipartition of energy is straightforward to see in the microcanonical ensemble. A
surprising feature of the microcanonical ensemble is the distinction between distinguishable
and indistinguishable particles, with the latter requiring an additional normalization of
Ωindisting = Ωdisting/N !. Despite its usefulness, the microcanonical ensemble lacks an
external reservoir (so in this ensemble no heat can be extracted, but only the conversion
of internal energy to mechanical work). In the next chapter, we will address the exchange
of heat between a system and a thermal bath, referred to as the canonical ensemble.

3.6.1 Homework Problems

1. In the game of Go, black and white stones are sequentially placed at the corners of
a n×n grid (forming a grid of (n − 1) squares). Without regard for the rules of the
game, how many ways total are there to place m black stones and m white stones on
the board? (Hint: There are 900,900 ways to place them if n = m = 4).

(a) How many ways are there to place m black stones in only the top k rows of the
board and m white stones in the remaining n−k rows if the squares on the grid
are distinguishable (e.g. are numbered)? For n = m = 19 (the standard board
size with ≈5% of the board filled in) and for k = 9, what is the probability of
black and white being found on different halves of the board by random chance?
You should work out the numerical value of the probability.

(b) What is the probability if the squares in the grid are indistinguishable (that is,
the board can be rotated or flipped)?

2. Suppose the entropy is related to the number of states through an arbitrary function
f(Ω). Show that entropy is additive and the number of states is multiplicative for
two systems if and only if f(Ω) ∝ log(Ω).

3. (a) Determine the volume of an d1 + d2 dimensional ellipsoid, which satisfies

d1∑
i=1

(
xi
r1

)2

+

d1+d2∑
i=d1+1

(
xi
r2

)2

≤ X2. (3.52)

Using the result of this calculation, determine the entropy, temperature, and
heat capacity for the following systems, given the total energy of the systems
are constrained to be E.

(b) Using the results of 3a, determine the entropy and temperature of a system of N
distinguishable, three dimensional, classical harmonic oscillators at fixed energy
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E, with each particle having energy

εi =
p2
i

2m
+
mω2

2
r2
i , (3.53)

(c) Using the results of 3a, determine the entropy and temperature of a system of
N1 particles with mass m and N2 with mass M . Assume you can distinguish be-
tween particles of mass m and M due to differing masses, but that two particles
of mass m are indistinguishable (and likewise for two particles of mass M).



Chapter 4

The Canonical Ensemble (Pathria
Ch 3)

In the previous chapter, we developed the microcanonical ensemble, which focused on
counting the number of states of a system such that the total energy of the system is
precisely constrained, with

∑N
i=1Ei = E. This was great, in that we were able to link

these calculations to thermodynamic variables, which provided insights into the meaning
of those variables and guidance into what to attempt to compute using the microcanonical
ensemble. The H theorem and the BBGKY hierarchy were derived in the same spirit,
with the mean particle energy ε the only constraint we imposed. In the microcanonical
ensemble, we showed that the temperature of the system T = ∂S/∂E|V,N satisfied the
equipartition theorem, E = 3NkBT/2, for an ideal gas as well.

There are, however, a few problems with the use of the microcanonical ensemble. First: it’s
actually pretty hard to compute anything. We can determine the behavior of an ideal gas,
but anything more complicated than that (or a harmonic oscillator) is really quite difficult,
because we must satisfy a global constraint implying a volume in phase space that can be
painful to compute. Second: a fixed energy is an odd thing to expect. It is rare that we
hold a system at exactly 1J, we are much more likely to hold the system at exactly 298K
via a thermal bath not accounted for in the microcanonical ensemble. Thermodynamics
provided a technique in the form of the Legendre transform to control the temperature,
and it seems likely some technique will exist to do so in statistical mechanics. This is
indeed the case, and is termed the canonical ensemble (in contrast to the microcanonical
ensemble, specifying the position and momenta of all particles simultaneously).

63
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Figure 4.1: Comparison of the microcanonical and canonical ensembles. In the micro-
canonical ensemble, N particles occupied various energy levels εl. The canonical ensemble
is formed of a variety of subsystems, each of which is composed of particles having some
energy εs. The total number of subsystems and total energy of the subsystems are con-
strained, but we no longer fix the energy of any individual subsystem.

4.1 Introducing a heat bath in statistical mechanics

4.1.1 An ensemble of ensembles

The microcanonical ensemble was developed by considering N particles that could be found
in different states, and constraining N =

∑
l nl and E =

∑
l nlεl (depicted in Fig. 4.1(A)).

Let us now imagine an ensemble of these ensembles: M systems of composed of a fixed
number of Nsub particles, with the systems all found with some set of energies εs (depicted
in Fig. 4.1(B)). The total energy of the ensemble of systems is E , but we do not constrain
the energy of any individual subsystem to be some fixed constant. Put another way, we
create a large number of microcanonical ensembles of particles, forcing ms of them to have
energy εs. Note that we’ve got a problem of indistinguishability here: we can’t determine
the microstate of any subsystem, so two subsystems that have exactly the same energy εs
are totally indistinguishable.

An alternate but equivalent way to understand the construction of the canonical ensemble
is to imagine a large system with Ntot particles in a volume Vtot having a fixed energy Etot,
and mentally identifying Nsub � Ntot particles as our first subsystem, having a total energy
ε1 (whatever value it has), depicted in Fig. 4.1(C). This sample is a thermal equilibrium
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with the entire system, which acts as a ‘heat bath’. We can perform this mental exercise an
arbitrary number of times, finding εs for the sth iteration of a subsystem at equilibrium with
the same heat bath. The question then is, what is the probability of a random collection
of N particles having an energy εs? This is an equivalent definition of a fixed number of
simultaneous subsystems.

As was the case in the microcanonical ensemble, we have made no assumptions about the
distribution of the energies at this point. Similar to the particle microstates in the previous
section, in the canonical ensemble the following states all have equal probability:

1. Subsystem 1 having energy E and all others having energy 0

2. Subsystem 1 having energy 0 and all others having energy E/(M − 1)

3. Subsystem 1 and 2 having energies E/2 and all others having energy 0

4. Subsystem 1 and 2 having energies 0, and all others having energies E/(M − 2)

That means, just as in chapter 1, that we expect the most likely distribution of energy
among the subsystems will be the distribution that has the greatest probability of occurring
by random chance. In the previous chapter, we used this equiprobability argument to
determine the effect of energy flowing between two microcanonical systems in order to
determine the final temperature of an isolated system. Here, we’re envisioning a system
immersed in a bath, and that approach will not work. Instead, we will determine the most
probable arrangement of {εs} that will occur given a total energy budget of E . To do this,
we define the statistical weight

W [{nl}] =
M !∏
sms

(4.1)

which is the number of ways we can arrange the M subsystems into nl indistinguishable
bins. Using Sterling’s approximation, we find

log(W ) ≈M log(M)−M −
∑
s

ms log(ms) +
∑
s

ms = M log(M)−
∑
s

ms log(ms) (4.2)

Note that none of this currently refers to an external heat bath yet, this is simply a
mathematical statement of the number of configurations.

4.1.2 The most probable distribution

In eq. 4.2, we’ve done nothing but count the number of ways to seeing a particular ar-
rangement {ms} occur. What we want to do now is maximize W , subject to the constraint
of a total energy

∑
smsεs = E . As a quick reminder, we use Lagrange multipliers when we
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want to maximize a function f(x1, x2, . . .) subject to the K constraints gk(x1, x2, . . .) = 0
over all of the variables xl. wen can then write

∂F

∂xi
=

∂F

∂λj
= 0 (4.3)

F (x1, x2, . . .) = f(x1, x2, . . .) +
∑
k

λkgk(x1, x2, . . .) (4.4)

because the constraints must be satisfied for a variation on each variable and each Lagrange
multiplier. Note that in principle we need to ensure that our function is a maximum as
opposed to a minimum, which we will not bother with here (although it’s very easy to show
it’s true!). Our two constraints are that M =

∑
sms and E =

∑
smsεs, so our function to

minimize is

F ({ms}) = M log(M)−
∑
s

ms log(ms)− α
(
M −

∑
s

ms

)
− β

(
E −

∑
s

msεs

)
(4.5)

which, after differentiation with respect to any ms leads to

∂F

∂ms
= 0 = −1− log(m∗s)− α− βεs (4.6)

so that

m∗s = C × e−βεs (4.7)

m∗s is the most probable number of subsystems in state s, and where C = e−α−1 is an
unknown constant. We can solve for each ms since we know that

∑
sms = M , and

so ∑
s

ms = M = C
∑
s

e−βεs ⇒ C =
M∑
s e
−βεs (4.8)

Before moving on, it’s worth reminding ourselves of the fundamental assumptions here.
We have assumed is that we can define subsystems having potentially different energies,
that the energies of those subsystems are fixed in time, and that equal energy systems are
indistinguishable. From these (and only these) assumptions, we have determined the most
probable arrangement of systems given a total energy E . Note that the most probable
fraction of systems with energy εs is m∗s/M = e−βεs/

∑
s e
−βεs , which does not depend on

M or E . This fraction depends solely on the individual energy levels. This fact permits us
to use the highly abstract system-of-subsystems that forms the microcanonical ensemble
to make useful predictions. Note also that the model does not require that the number of
particles in our subsystem Nsub is large. In fact, we could substitute Nsub = 1 without
changing anything: instead of sampling ‘subsystem’ energies, we’d specifically be sampling
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particle energies. Those energies may be degenerate, and the analysis here determines the
most probable distribution of particle energies in a system.

This most probable occupancy is not the same thing as the average occupancy, and there
are many distributions for which the mean is not identical with the most probable value,
〈x〉 6= x∗. We make one final approximation: that the distribution of ns is sharply peaked
about its mean. If that is the case, the average number 〈ms〉 ≈ m∗s, with variance scaling
with the width of the distribution. Thus, if the distribution is narrow and peaked around
its most probable configuration, the final probability of finding a system in state s is

Ps =
〈ms〉
M
≈ m∗s
M

=
e−βεs∑
s e
−βεs (4.9)

in the context of a system. In the context of individual particles, the same analysis holds
and we find

Pl =
〈nl〉
Ntot

≈
n∗l
Ntot

=
e−βεl∑
l e
−βεl

(4.10)

where nl is the number of particles with energy εl, exactly as we used in the development
of the microcanonical ensemble. The mathematics here are the same, but eqs. 4.9 and
4.10 are subtly different: the former talks about the statistics of groups of particles, while
the latter talks about the statistics of individual particles. This distinction will be more
relevant in the context of the grand canonical ensemble, where the number of particles
can vary. The denominator of this probability is referred to as the ‘partition function,’
Q1 =

∑
l e
−βεl , and we will find this is a useful quantity in a number of cases.

It is worth noting that this calculation was more convenient for determining the statistics
of discrete systems, but similar results hold for continuous systems. The construction is
similar, where we assume we have M subsystems, with m(ε)dε having energy between ε and
ε + dε. Constraints can be developed in a manner similar to before, with M =

∫
dεm(s),

E =
∫
dεεm(ε), and log(W ) = −

∫
dεm(ε) log[m(ε)]+constant. The derivative ∂F/∂ms

becomes a functional derivative δF/δm(s) = limδ→0(F [m(s) + δµ(s)] − F [m(s)])/ε for
some arbitrary µ. While this is somewhat more difficult to work with, the maximization
can be readily shown to reduce to the continuous form of eq. 4.6. That means:

• Analogous to the Pl =∝ e−βεl in the discrete case, the probability of seeing a particle
with energy between ε and ε+ dε is P (ε)dε ∝ e−βεdε.

• Analogous to the normalization term Q1 =
∑

l e
−βεl , the normalization in the con-

tinuous case is Q1 =
∫
dεe−βε
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4.2 Thermodynamics and the Canonical Ensemble

4.2.1 Relating the canonical ensemble to the Hemholtz Free Energy

As we did in the microcanonical ensemble, this statistical approach must be connected to
thermodynamics in order to be useful. A useful thermodynamic quantity we can compute
immediately is the mean energy of a subsystem: U = E/M =

∑
s εse

−βεs/
∑

s e
−βεs . , and

we can likewise find

U =
E
M

=

∑
s εse

−βεs∑
s e
−βεr = − ∂

∂β
log

[∑
s

e−βεs
]

(4.11)

where the last equality is simply a mathematical identity after taking the derivative with
respect to β. Note that we’ve now related the thermodynamic variable U to the derivative
of some quantities, which is suggestive. In the microcanonical ensemble, we saw that
∂ log(Ω)/∂E was equal between two systems at equilibrium, satisfying the zeroth law of
thermodynamics with the identification S = log(Ω) (Don’t get confused: this was true in
the microcanonical ensemble only!). Can we identify a similar thermodynamic relationship
equating the energy to a partial derivative at constant number and volume?

Indeed we can identify a relationship between our statistical mechanical U and the ther-
modynamic energy through a relationship with the Helmholtz free energy. Recalling that
A = U − TS and dA = −SdT − pdV + µdN , we readily see that S = −∂A/∂T |NV . We
can then write

U = A+ TS = A− T ∂A
∂T

∣∣∣∣
NV

= −T 2 ∂

∂T

(
A

T

)∣∣∣∣
NV

=
∂(A/T )

∂(1/T )

∣∣∣∣
NV

(4.12)

where the third and fourth equalities are due differentiation:

∂(A/T )

∂T
= T−1 ∂A

∂T
− T−2A (4.13)

∂(A/T )

∂(1/T )
= −T 2 ∂(A/T )

∂T
(4.14)

This converts the thermodynamic definition of U into a partial derivative at constant N
and V , exactly as we needed. Comparing Eqs 4.11 and 4.12 immediately shows that

β ∝ 1

T
=

1

kBT
log

[∑
s

e−βεs
]
∝ −A

T
= − A

kBT
(4.15)

where kB is (at the moment) an arbitrary constant. Note it must be the same constant
between the two terms, since the last equality of eq. 4.11 must be independent of this arbi-
trary constant. We have thus found a connection between thermodynamics and statistical
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mechanics. In particular, we have

e−βA =
∑
s

e−βεs ≡ QN (V, T ) (4.16)

where Q = QN (V, T ) is the partition function of the system. This is distinct from the
single-particle partition function Q1 =

∑
l e
−βεl , which is a weighted sum over all energy

levels for a single particle. QN sums over all possible energy levels of the system, which
may depend on interparticle interactions. Sometimes we will write Q for the system’s
partition function, without explicitly specifying the values of N , V , and T . We will see the
partition function plays a significant role in the mathematics of the canonical ensemble,
and its physical interpretation will be discussed in the next section.

In later parts of the course, we’ll encounter systems that have degenerate energy levels:
multiple distinct states the system can occupy that have an identical energy. For example,
photons have energy εν = hν, but can be polarized in one of two directions. Since Q =∑

states e
−βεstate , any system whose energy levels have degeneracy gs will have gs copies of

the term e−βεs in the partition function. We then have

Q =
∑
εs

gse
−βεs (4.17)

where the sum is over unique energies and the coefficient accounts for the degeneracies.
We won’t deal with this much in the near-term, but it’s worth being aware of it at the
outset.

4.2.2 Entropy in the canonical ensemble

The mean value of any function f can be determined by

〈f〉 =
∑
s

Psf(εs) =

∑
s e
−βεsf(εs)∑
s e
−βεs = Q−1

∑
s

e−βεsf(εs) (4.18)

This provides one important purpose of the partition function: it’s the normalization
required to compute a probability. Anytime one computes an average in the canonical
ensemble, the partition function will be in the denominator. If all states were equally
probable, the denominator would simply be the total number of accessible states (with all
microstates being equally likely). In the canonical ensemble, some energy levels are more
likely than others, so this normalization is weighted.

In Chapter 2, we saw that

Skinetic = −
∫
d3pf0(p) log[f0(p) ∝ 〈log(f0)〉, (4.19)
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where f0(p) was the number density of particles with momentum p, produced a number
properties expected of the entropy, Skinetic = −H(t) where H(t) was the H-function not
the Hamiltonian. S was the mean of the logarithm of the distribution of momenta, and it
naturally leads to the calculation

〈log(P )〉 =
∑
s

Ps log(Ps) =
∑
s

Ps log

(
e−βεs

Q

)
= − log(QN )− βU (4.20)

=
A

kBT
− U

kBT
(4.21)

= − S

kB
(4.22)

or

S = −kB
∑
s

Ps log(Ps) (4.23)

Once again, we have found that the entropy is related to the global distribution of particle
statistics (as it was in Boltzmann’s H-theorem). This remarkable result links the statistical
theory described here to the classical kinetic theory described in chapter 2 despite radically
different approaches and assumptions.

Entropy differs significantly from energy in a fundamental way, in that it depends on the
statistics of the entire system, rather than the statistics of single particles. The energy is
U =

∑
s εsPs, involving a product of a single state and the probability of being found in that

state. The entropy S = −kB
∑

s log(Ps)Ps involves the distribution in a more fundamental
way, since log(Ps) does not depend on a single particle occupying a specific state, but rather
is the probability that a particle could be found in state s. The entropy cannot be described
by discussing the state of a single particle, and is a property of the particle as well as the
entire phase space. Eq. 4.23 is an incredibly versatile result, and is used in a wide variety of
fields outside of thermal equilibrium to quantify the disorder or unpredictability of systems
(with the Shannon entropy perhaps the most common example).

The emergence of the form S ∝ −〈log(P )〉 in the kinetic theory and the canonical ensemble
begs the question: why we didn’t see this relationship in the microcanonical ensemble?
Surprisingly, we did, but didn’t realize it! In the microcanonical ensemble, the system is
constrained to be at a precisely fixed energy, and S = kB log(Ω) is related to the total
number of accessible states of that system. Each of those accessible states has a uniform
probability of occurring, Pmicrol = Ω−1. We can therefore write

S = kB log(Ω) = −kB
∑
r

1

Ω
log

(
1

Ω

)
= −kB

∑
r

Pmicrol log(Pmicrol ) (4.24)
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where the probability of being in the rth state is uniform. Thus, the identification of
S = −〈log(P )〉 remains true in the canonical ensemble, but it was not clear that it was
useful when deriving the microcanonical ensemble.

4.2.3 Entropy Maximization

Because entropy of the form S ∝ −〈log(P )〉 comes up in a wide range of fields, it’s worth
noting that the canonical ensemble can be re-derived in terms of a maximum entropy
principle. Suppose we take as given that S = −

∑
s Ps log(Ps), and wanted to maximize

the entropy subject to the constraints that
∑

s Ps = 1 and U =
∑

s Psεs. Using the same
method of Lagrange multipliers, we can write

F ({Ps}) = −
∑
s

Ps log(Ps)− α
(∑

s

Ps − 1

)
− β

(∑
s

εsPs − U
)

(4.25)

and find that ∂F/∂Ps = 0 implies

Ps ∝ e−βεs (4.26)

Note this has different starting assumptions than how we generated the canonical ensemble
(by sampling multiple subsystems at thermal equilibrium with a bath), but still arrives at
the same conclusion. If this is coupled with an assumption of thermal equilibrium, we’ll be
able to confirm that β = 1/kBT as before.

The entropy maximization principle is much more flexible than the formal derivation for the
canonical ensemble in section 4.1.1, because it applies even when there is no connection
to a well defined temperature. Any system with multiple possible states can have an
entropy defined as S ∝ −〈log(P )〉, and any such function can be maximized. This simple
methodology has led to the implementation of statistical mechanics in a wide range of
fields, but it is very important to keep in mind that

• For every problem, you are not guaranteed that S ∝ −〈log(P )〉 is the ‘correct’ way
to measure disorder or unpredictability. It is a reasonable choice, but you are not
guaranteed it’s the ‘correct’ choice. There are generalizations to inextensive forms of
entropy

• For every problem, you are not guaranteed that S will always be a maximum. This is
particularly an issue for finite size systems! We’ve had systems of N = 1023 particles
in mind up to this point, where fluctuations are expected to be small (we’ll show
this explicitly soon). You can still define S = −kB〈log(P )〉 for N = 10 particles,
but in that case fluctuations will be significant and your optimization may not be
meaningful.
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We’ll see that statistical mechanics is powerful and able to make accurate predictions in a
wide range of contexts. You may be able to apply these techniques to a novel system, but
it’s important to carefully consider its appropriateness before doing so!

4.3 The Ideal Gas in the canonical ensemble

4.3.1 Continuum Partition function

The finite energy levels here may seem a bit unwieldy, since we may have a nicely defined
Hamiltonian H(p, q) that we want to consider, and we might want to compute statistical
observables classically (instead of quantum mechanically, where we are guaranteed discrete
eigenvalues for fixed volume). This is straightforward with the identification of H(p,q) =
Esubsystem, where p and q include all Nsub particles in the subsystem. We can rewrite the
weight factor pr in terms of the microcanonical variables

ρ(p,q) = e−βH(p,q)

/
1

N !h3N

∫
d3Npd3Nq e−βH(p,q) (4.27)

as the term e−βH normalized by its integral over all phase space. This denominator plays
the role of

∑
s e
−βεs = QN for the discrete case, and we therefore write

QN (V, T ) =
1

N !

∫ ∏
i

d3pid
3qi

h3
e−βH({pi,qi}) (4.28)

as the continuum partition function, where the h3N removes dimensionality (and is assumed
to be precisely Plank’s constant as before), and N ! accounts for the particle indistinguisha-
bility. This is similar to the integrals we did before over all phase space, except for one
fact: we (happily) no longer have a complicated constraint over fixed energy! That is, we
are no longer computing a constrained phase space volume in the microcanonical ensemble,
with

Ω =

∫
d3Npd3Nq

h3NN !
δ

(
H(p,q)− E

)
(4.29)

which was the unpleasant process we worked through in Chapter 3. The partition function
simply requires an integration over all possible values of the energy (through the Hamilto-
nian), weighted by the exponential factor e−βH . In some sense, the partition function is
thus the ‘effective volume’ of the phase space at constant temperature, rather than a true
phase space volume at constant energy represented by Ω.
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The meaning of an ensemble average in the continuum is computed in a manner similar to
the discrete case, with any function f(p,q) having an average

〈f〉 =

∫
d3Npd3Nqf(p,q)e−βH(p,q)∫

d3Npd3Nqe−βH(p,q)
=

1

N !

∫
d3Npd3Nq

h3N

e−βH(p,q)

Q
× f(p,q) (4.30)

Note that this functional form shows that the probability of finding a particle at any p−q
pair is proportional to e−βH(p,q), with a proportionality constant [N !h3NQ]−1.

Note again that, as discussed in Ch 2, sometimes the notation 〈· · ·〉 can be overloaded. We
can use the notation 〈f(r,p)〉p = f̄(r) to denote the average of a function over momentum
only (leaving r fixed). In the literature, you may find the subscript 〈· · ·〉p is dropped. You
can identify the variables that are being integrated over by (a) reading the surrounding
text (where often the writer will explain s/he is integrating over the momentum degrees of
freedom), and (b) identifying the variables that are still present after the averaging (e.g.
f̄(r) has an explicit dependence on r, so it cannot have been integrated over).

4.3.2 Statistics of the Ideal Gas

Previously, we computed the thermodynamics of an ideal gas at constant energy, and found
E = 3NkBT/2 as the definition of temperature. In the classical canonical ensemble, we
find

Q =

∫
d3Npd3Nq

h3NN !
e−β/2m

∑
i p

2
i =

V N

h3NN !

(∫
dpe−βp

2/2m

)3N

(4.31)

=
1

N !

(
V

h3

[
2πm

β

]3/2)N
=

1

N !

(
V

λ3

)N
(4.32)

We can first use this to determine the mean energy

U = −∂ log(QN )

∂β
=

3N

2β
=

3NkBT

2
CV =

∂U

∂T

∣∣∣∣
NV

=
3NkB

2
(4.33)

which is the equipartition theorem we previously found. This allows us to identify k = kB
as expected. We also find the Helmholtz free energy

A = −kBT log(QN ) ≈ −NkBT log

(
V

Nλ3

)
−NkBT (4.34)

From this, we can readily compute the entropy via

S = −∂A
∂T

∣∣∣∣
NV

=
U −A
T

= kB log(QN ) +
kBβ

QN

∂QN
∂β

(4.35)
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which yields after some algebra

S = NkB log

(
V

Nλ3

)
+

5NkB
2

(4.36)

Perhaps surprisingly, this is exactly the same entropy we derived in the microcanonical
ensemble, where the energy of the system was held fixed. We will see in a moment that
this is because the distribution of the energy is sharply peaked, so a canonical system with
E = 3NkBT/2 for T held fixed and E fluctuating behaves almost exactly the same as a
system with fixed energy E.

We can also compute

p = −∂A
∂V

∣∣∣∣
NT

=
NkBT

V
(4.37)

which reproduces the ideal gas law pV = NkBT . Note that we have differentiated the
Helmholtz free energy with respect to V in Eq. 4.37, rather than the internal energy,
because in the canonical ensemble the temperature is held fixed (which means it appro-
priate, as T a proper variable for A). We can compute p = −∂U/∂V |NS if we can de-
vise a method to vary the volume while holding the number and entropy fixed. Since
S = NkB log(V/Nλ3) + 5NkB/2, the only way we can do this is by making the temper-
ature a function of V (that is, cooling our system as we increase the volume so that the
entropy stays constant). In particular, we can write

λ =

(
V

N

)1/3

e−S/3NkB+5/6 T =
2πmkB
h2

(
N

V

)2/3

e2S/3NkB−5/3 (4.38)

Given this, we can write

p = −∂U
∂V

∣∣∣∣
NS

= −3NkB
2

∂T

∂V

∣∣∣∣
NS

=
3NkB

2

2T

3V
=
NkBT

3
(4.39)

where we have used the fact that T (V ) ∝ V −2/3, so ∂T/∂V = −2T/3V .

We can likewise compute the chemical potential as

µ =
∂A

∂N

∣∣∣∣
TV

= kBT log

(
V

Nλ3

)
+

3kBT

2
(4.40)

Note that the second term here does not depend on any thermodynamic variable except
for temperature, and acts as a constant offset for the chemical potential for two thermally
equilibrated systems.
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4.3.3 Energy Fluctuations

The reason the canonical and microcanonical ensembles (two systems with very different
constraints) give an identical expression for the entropy is that the canonical ensemble’s
energy distribution is sharply peaked about its mean, 3NkBT/2, so behaves almost like a
system with a fixed total energy. We can show this for a discrete system by manipulating
the partition function to compute the mean energy and the energy fluctuations. It is
straightforward to see that

Q =
∑
l

e−βεl ⇒ U = 〈E〉 = −∂ log(QN )

∂β
(4.41)

which means we can compute energy by simply taking a derivative of the partition function.
We can also readily see that

∂2 log(QN )

∂β2
= −∂〈E〉

∂β
= − ∂

∂β

[∑
r Ere

−βEr∑
r e
−βEr

]
=

∑
r E

2
r e
−βEr∑

r e
−βEr −

(∑
r Ere

−βEr∑
r e
−βEr

)2

= 〈E2〉 − 〈E〉2 (4.42)

The same calculation works in the continuous case, with 〈E〉 = 〈H〉 and 〈E2〉 = 〈H2〉. It’s
also useful to note that〈

(E − 〈E〉)2

〉
=

〈
E2 − 2〈E〉E + 〈E〉2

〉
= 〈E2〉 − 〈E〉2 (4.43)

so we’ve computed the fluctuations of the energy about the mean in eq. 4.42. Eq. 4.42
is perhaps surprising, as we can compute fluctuations in the energy by just taking an-
other derivative. This illustrates another use of the partition function: by simply taking
derivatives we are able to compute the mean values of a variety of quantities, both directly
related to thermodynamics (such as U , A, and S) as well as novel and not easily computed
thermodynamically (such as 〈∆E2〉).

We therefore have, quite generally that

〈E2〉 − 〈E〉2 = − ∂U

∂(kBT )−1
= kBT

2∂U

∂T
= kBT

2CV (4.44)

for the system held at constant volume. This relationship is true regardless of the form
of the Hamiltonian, even if there are complicated interactions between the particles. Note
that for the ideal gas, CV = 3NkB/2 and U = 3NkBT/2, leading to

〈∆E2〉 =
3Nk2

BT
2

2

〈∆E2〉
〈E〉2

=
2

3N
(4.45)
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This means that the width of the distribution in energy is large (scaling as N1). However,
the relative fluctuations are vanishingly small for large N , scaling as N−1. The latter can
be thought of in terms of a percent fluctuation around the mean, which for a system of 1023

ideal particles would be ∼ 6×10−20%, an entirely negligible number. Thus, the distribution
in the canonical ensemble can be seen as being sharply peaked about the mean, leading to
identical statistics as in the microcanonical ensemble.

4.3.4 Energy fluctuations for noninteracting systems

The relative fluctuations in an ideal gas can be computed in an alternate manner, which
can be extended to other uncorrelated systems as well. We can write for the ideal gas
that

〈E2〉 =

〈(∑
i

p2
i

2m

)2〉
=

1

4m2

∑
ij

〈p2
ip

2
j 〉 (4.46)

=
1

4m2

(∑
i

〈p4
i 〉+

∑
i 6=j
〈p2

ip
2
j 〉
)

(4.47)

=
1

4m2

(∑
i

〈p4
i 〉+

∑
i 6=j
〈p2

i 〉〈p2
j 〉
)

(4.48)

=
1

4m2

(∑
i

[〈p4
i 〉 − 〈p2

i 〉2] +
∑
ij

〈p2
i 〉〈p2

j 〉
)

(4.49)

=
∑
i

(〈ε2i 〉 − 〈εi〉2) + 〈E〉2 (4.50)

= N〈∆ε2〉+ 〈E〉2 (4.51)

where ∆ε = ε− 〈ε〉 is the energy fluctuation of a single particle. The important step here
is the replacement 〈p2

ip
2
j 〉 = 〈p2

i 〉〈p2
j 〉, which is due to the fact that the particle momenta

are independent of one another. Note that eq. 4.51 immediately implies

〈E2〉 − 〈E〉2

〈E〉2
=
N〈∆ε2〉
(N〈ε〉)2

=
1

N

〈∆ε2〉
〈ε〉2

(4.52)

This means the relative root mean square deviations (RMSD) in energy scale as N−1/2,
which confirms our assumption that the distribution is sharply peaked: as energy becomes
large, deviations from the mean energy become negligible. This scaling is true so long as
〈εiεj〉 = 〈εi〉〈εj〉: that is that the energies of each particle are statistically independent.
Any noninteracting system will have this property.
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4.3.5 Separability of the Partition Function

In a continuous system, the partition function is given by

Q =
1

N !

∫ ∏
i

d3pid
3ri

h3n
e−βH[{ri,pi}] indistinguishable (4.53)

Q =

∫ ∏
i

d3pid
3ri

h3n
e−βH[{ri,pi}] distinguishable (4.54)

For independent systems, where there is no interaction between any of the particles, H =∑
i h(ri,pi) with no coupling between particle i and any other particle j. In this case, we

immediately find

QN =
1

N !

(∫
d3pd3r

h3
e−βh(ri,pi)

)N
=
QN1
N !

(4.55)

for an indistinguishable system, where QN is the partition function for all N particles and
Q1 is the partition for a system of one particle. For distinguishable noninteracting systems,
we likewise find QN = QN1 . For separable discrete systems of identical non-interacting
particles, we have a similar result if we write εs =

∑
i εi, with

QN =
∑

states s

e−βεs =
1

N !

∑
energies ε1

. . .
∑

energies εN

e−β
∑
i εi =

1

N !

(∑
ε

e−βε
)N

=
QN1
N !

(4.56)

where the sum over states includes the contribution from each particle and the sum over
energies is the the individual contribution from each particle. Note that the sums can be
written as a sum over εni for N distinct integers ni; we’ve written it this way because a
sum over indexed integers can be somewhat unclear.

Regardless of the system, if the particles do not interact, we only need to do a calculation
for one particle. A system of N particles whose energies are separable has a partition
function QN = QN1 for distinguishable particles and QN = QN1 /N ! for indistinguishable
particles. Note that this is entirely consistent with eq. 4.32 or ??, where a single ideal gas
particle has a partition function Q1 = V/λ3.
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4.4 Equipartition of Energy

4.4.1 Implication of vanishing distribution on the boundary

We’ve mentioned the equipartition theorem of energy often, every time we see something
looking like E ∝ NkBT . The equipartition theorem is an important result in classical
statistical mechanics exactly relating the energy to the temperature in a system with a
quadratic (sometimes called Gaussian) Hamiltonian. We suppose we have some Hamilto-
nian H(p,q) over the generalized coordinates q. We know〈

xi
∂H

∂xj

〉
=

1

N !h3NQ

∫ ∏
i

d3pid
3xixi

∂H

∂xj
e−βH (4.57)

where xi and xj are any of the 6N variables pi or qi, and Q is the partition function.
A useful result arises if we consider the average of a special family of functions: taking
xi 6= xj to be any component of any position or momentum variables, we can write the
integral over all variables except for xi and xj in terms of d6N−2x, with〈

xi
∂H

∂xj

〉
=

1

N !h3NQ

∫
d6N−2x′

∫
dxixi

∫
dxj

∂H

∂xj
e−βH (4.58)

=
1

N !h3N

∫
d6N−2x′

∫
dxixi

e−βH

Q

∣∣∣∣xmaxj

xminj

(4.59)

=
1

N !h3N

∫
d6N−2x′

∫
dxixi

e−βH

Q

∣∣∣∣xmaxj

xminj

(4.60)

=
1

N !h3N

∫
d6N−2x′

∫
dxixi

(
P ({x}, xj = xmaxj )− P ({x}, xj = xminj )

)
(4.61)

= 0 (4.62)

Here, we have used the fact that the probability of being found in a particular configuration
is P ({r,p)}) = Q−1e−βH({r,p}), and used the fact that the probability of being found at the
boundary of the phase space vanishes. That is, there is vanishing probability of a particle
being found with infinite momentum or of sticking to the wall. The arguments here are
the same as in Sec. ?? of Ch 2.

This result breaks down if we choose our variables xi and xj to be the same. We can
compute the average〈

xi
∂H

∂xi

〉
=

1

N !h3NQ

∫
d6N−1x′

∫
dxixi

∂H

∂xi
e−βH (4.63)

=
1

N !h3NQ

∫
d6N−1x

(
− xie

−βH

β

∣∣∣∣xmaxi

xmini

+
1

β

∫
dxie

−βH
)

(4.64)



CHAPTER 4. THE CANONICAL ENSEMBLE (PATHRIA CH 3) 79

=
1

βN !h3NQ

∫
d6N−1x

∫
dxie

−βH (4.65)

=
1

β
(4.66)

where we have still assumed that H →∞ on the boundary (so we can neglect the boundary
terms), and have recognized that

∫
d6N−1x

∫
dxie

−βH =
∫
d3Npd3Nre−βH = N !h3NQ for

any choice of xi.

We therefore have the general result that for any variable xi that plays a role in the
Hamiltonian that 〈

xi
∂H

∂xj

〉
= kBTδxi,xj (4.67)

This statement is true for any classical system, regardless of the form of the Hamiltonian.
However, it is very useful if the Hamiltonian has a special form.

4.4.2 The Equipartition Theorem

If our system is nonrelativistic, the kinetic energy will have the form
∑

i p
2
i /2m, quadratic

in each particles momentum. If the Hamiltonian also consists of separable, quadratic power
law terms, V (r) =

∑
i air

2
i , then〈

xi
∂H

∂xi

〉
= 〈xi × 2aixi〉 = 2ai〈x2

i 〉 = kBT (4.68)

which implies ∑
i

〈
xi
∂H

∂xi

〉
= 2〈H〉 = fNkBT ⇒ U =

fkBT

2
(4.69)

where f is the number of ‘active’ degrees of freedom in the system, defined as the number
of degrees of freedom that contribute energy to the Hamiltonian. Degrees of freedom that
do not have an energetic contribution to the Hamiltonian do not add to the active degrees
of freedom, and any terms in the Hamiltonian that are not quadratic will invalidate the
equipartition theorem.

For non-relativistic particles, we’re guaranteed that at least the momentum terms enter
the Hamiltonian quadratically, which immediately implies in three dimensions that

〈K〉 =
1

2

∑
i

〈p2
i 〉 =

1

2

∑
i

〈
pi
∂H

∂pi

〉
=

3NkBT

2
(4.70)
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with f = 3N active degrees of freedom (3 momentum per particle), consistent with the
energy we found for the ideal gas. Note that this is perfectly general for a classical,
nonrelativistic system: regardless of the interactions between particles, the average kinetic
energy will always be 3NkBT/2. This result will be important in the development of the
Virial Theorem, in sec. 4.5

4.5 The Virial Theorem

4.5.1 Mean Energies for interacting particles

In Sec. 4.4.2, we determined the mean kinetic energy for any system of nonrelativistic
particles. The kinetic energy is a useful quantity to compute, with 〈K〉 = 3NkBT/2
for nonrelativistic particles in three dimensions. A related quantity, termed the Virial
V =

∑
i ri ·∂H/∂ri can also be computed in a similar manner. This is most easily performed

if there are central force interactions between the particles, having the potential energy
Upot =

∑
i<j u(|ri − rj |). This can be simplified significantly by noting that

r1 ·
∂u(r1 − r2)

∂r1
+ r2 ·

∂u(r1 − r2)

∂r2
= r1

∂u(r)

∂r

∣∣∣∣
r=r1−r2

− r2
∂u(r)

∂r

∣∣∣∣
r=r2−r1

(4.71)

= (r1 − r2) · ∂u(r)

∂r

∣∣∣∣
r=r1−r2

(4.72)

= r12 ·
∂u12

∂r12
(4.73)

with r12 = r1 − r2. In this case, we can then write

V = −3NkBT = −2〈K〉 (4.74)

= −
∑
i

〈
ri
∂H

∂ri

〉
(4.75)

= −
〈

1

2

∑
i

ri ·
∂

∂ri

∑
j

u(ri − rj)

〉
(4.76)

= −
〈

1

2

∑
ij

rij ·
∂uij
∂rij

〉
(4.77)

This is an exact expression for any central force problem, but its primary use arises when
u(rij) is a power law, with u(r) = rα and ∇ru(r) = αrα−1r̂. In this case, r · ∇ru(r) =
αrα = αu(r), so

−V =

〈∑
i

ri ·
∂H

∂ri

〉
=
∑
i<j

α〈u(rij)〉 = α〈Upot〉 = 2〈K〉 (4.78)
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This gives an exact relationship between the mean potential energy and the mean kinetic
energy of a system of particles interacting with a power-law central force potential.

For α = 2, we have a collection of particles connected by a spring, and we readily find
that 〈Upot〉 = 〈K〉 = 3NkBT/2, so that the kinetic and potential energies contribute
equally to the total energy of the system. Another interesting choice for the potential
is α = −1, corresponding to a gravitational attraction between particles. In this case,
〈Upot〉 = −2〈K〉. Deviations from the Virial theorem in the Coma cluster of nebulae was
the first evidence that stellar objects were moving too fast to be explained by the observable
mass, first observed by Zwicky in 1933. He found that that the cluster velocity determined
by redshift gave a mean kinetic energy that was orders of magnitude larger than the total
potential energy, determined assuming the nebulae were uniformly distributed in a sphere
and luminosity was proportional to mass. The term dark matter was coined in reference
to this deviation (but took decades to be widely accepted as the best explanation for the
deviation).

4.5.2 Deviation from the ideal gas law

The last term of eq. 4.77 can also be rewritten in a convenient way. The average depends
only on the pairwise separation between to particles, so we can compute it directly if we
know the probability of finding two particles at any particular locations. Ensemble averages
can be computed using the pair correlations, since

〈F (r, r′)〉 =

∫ ∏
i

d3pid
3rid

3r′ρ({p, r})F (r1, r2) (4.79)

with ρ the N particle distribution function in phase space. We can simplify this using the
two particle distribution in physical space by defining ρ2(r1, r2) =

∫ ∏N
i=1 d

3pi
∏N
j=3 d

3rjρN ({p, r}).
ρ2 is the joint distribution of the first two particles located at point r1 and r2. Because
the statistics must be independent of the particle index, it is convenient to define the pair
correlation function

ρ2
0g(r, r′) = N(N − 1)ρ2(r, r′) ρ0 =

N

V
(4.80)

which tells us the probability of finding any pair of particles simultaneously at r1 and
r2. Far from the walls of the container we expect to find g(r, r′) = g(|r − r′|), and the
probability of finding a pair of particles a distance r from one another is g(r)/ρ2

0.

For any central force interaction between the particles, we can then write

−V =
1

2

∑
ij,i6=j

〈
rij ·

∂uij
∂rij

〉
(4.81)
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=
1

2

∑
ij,i6=j

∫
d3rid

3rj |rij |u′ijρ(ri, rj) (4.82)

=
N(N − 1)

2

∫
d3r1d

3r2|r1 − r2|u′(r1 − r2)
ρ2

0

N(N − 1)
g(r1, r2) (4.83)

=
N2

2V 2

∫
d3rd3R|r|u′(r)g(r) (4.84)

=
2πN2

V

∫ ∞
0

dr r3u′(r)g(r) (4.85)

where R is the center of mass of the particles and r = r1 − r2 is the displacement vector
between them. The virial is thus related to the (generally unknown, as was the case in the
BBGKY) pair distribution of the particles. In the next section we will be

4.5.3 Pressure and the Virial Expansion

So far we have only considered the a central force between the particles, but in a vol-
ume there’s also an interaction with the wall. We neglected this entirely in the pairwise
calculation, but we can include it explicitly by writing

−Vtot = −V − Vwall =
∑
i<j

〈
riju

′(rij)

〉
+
∑
i

〈
ri · Fwall

i

〉
(4.86)

where Fwall is the change in momentum of a particle due to the collision with a wall. This
is effectively a δ function interaction (the wall exerts no force on the particle until the
particle comes in contact with it, at which point the force is infinite), but we can still
compute the Virial from the hard core wall by noting that the total force due to the wall
is −pdA (the pressure times the surface element, pointing inwards). So, the contribution
to the virial due to the walls is

−Vwall =

〈∑
i

riFi

〉
=

〈∫
∂V

r · dF
〉

(4.87)

=

〈∫
∂V

r · d(pA)

〉
(4.88)

= p

∫
V
∇ · rdV = 3p

∫
dV = 3pV (4.89)

where we have used the fact that the average force on a particle is simply defined as the
pressure times the area. In the case of an ideal gas, Vtot = −3NkBT = Vwall and we have
again found that pV = NkBT for an ideal gas.
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For a real gas, with pairwise interactions, we know that Vtot = −3NkBT and Vwall = 3pV ,
and can rewrite the ideal gas law in terms of a correction due to interparticle interac-
tions:

pV = NkBT +
1

3

∑
i<j

〈
rij · ∇riju(rij)

〉
(4.90)

This relation is useful in a number of contexts. First, it can be used to directly compute
the instantaneous pressure of a system in a computer simulation at constant volume, by
dropping the averages: p = ρkBT − V −1

∑
i<j rij · Fij with Fij = −∂uij/∂rij . This is

far more efficient and accurate than trying to compute a pressure from determining the
mean force on the boundary due to collisions, a method that would not be possible to
accurately compute for each time step of the simulation. Alternatively, in a simulation
at constant pressure eq. 4.90 can be used to set a barostat, in which the the volume is
dynamically adjusted to maintain the pressure at a set value. This approach to a barostat
is similar to some versions of thermostats, which scale the time or velocity in a simulation
to keep T =

∑
miv

2
i /3NkB to be a fixed value to hold temperature fixed. One simple

computational method for maintaining a constant pressure which holds p fixed in eq. 4.90
is referred to as a Berendsen barostat. Many other barostats exist, some of which more
accurately model the dynamics of molecular systems, but the Berendsen algorithms are
efficient and simple to understand.

4.5.4 Virial Coefficients

Eq. 4.90 can also be used to define what’s called the virial expansion, used in a wide range
of contexts. The last term of eq. 4.90 is expected to depend on the density ρ = N/V , since
it involves averages over intermolecular interactions, and for ρ → 0 the gas will be dilute
enough that the interactions become negligible. In that case, we expect we can write

P = ρkBT

(
1 +

2πρ

3

∫ ∞
0

drr3u′(r)g(r)

)
(4.91)

= ρkBT

(
1 + a1ρ+ a2ρ

2 + · · ·
)

(4.92)

where the ai are called Virial coefficients. For complex intermolecular interactions, the
Virial coefficients often simplify the problem, by breaking the calculation into pieces de-
pendent on the number of particles interacting in a collision. You can see this by imagining
the volume is divided into small bins δv = δl3 with δl an effective interaction range of the
particles (assumed short ranged). The total number of bins is Mbin = V/δv, and the prob-
ability of a particle being found in a particular bin pbin = N/Mbin ∝ ρ. For a dilute gas
without correlations, the probability of two particles being found in the same bin, where
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interactions may matter, is p2 ∝ ρ2, the probability of three particles being found in the
same bin p3 ∝ ρ3, and so on. The first term in eq. 4.92 is proportional to ρ, meaning it
does not depend on inter-particle interactions, but rather on the particle interactions with
the volume (this is correct, since the first term is the ideal gas term). The second term
of the Virial expansion is proportional to ρ2, which means it includes only pair interac-
tions between particles. Needing to only consider two particles often makes this coefficient
simpler to calculate than later terms that require additional particles. Computing virial
coefficients exactly is generally quite difficult, and usually one must resort to simulations to
estimate the virial coefficients. Models accurately describing the third virial coefficient for
real fluids took decades to develop, and computational approaches to determine the virial
coefficients for complex Hamiltonians is still an area of active research in many fields.

4.6 Harmonic Oscillators

4.6.1 Classical Harmonic Oscillators

It’s useful to explicitly compute some of the thermodynamics of different systems that
are computationally straightforward. The simplest is that of a system of one-dimensional
harmonic oscillators, something that we looked at explicitly in the case of the equipartition
theorem. We will generally consider harmonic oscillators to be distinguishable particles,
because each is oscillating around a fixed point which need not be the same. If we imagine
these are oscillations in a lattice, for example, each particle is easily distinguishable from
the next because they are all pinned to distinct points in the lattice. The Hamiltonian for
N one-dimensional oscillators pinned at locations q0

i and confined with a line of length −L
and L is

H =
1

2m

∑
i

p2
i +

mω2

2

∑
i

(qi − q0
i )

2 (4.93)

Note that these are generalized coordinates, so qi could be the angle of a pendulum just
as easily as the coordinates of a harmonically bound particle. If all of those points are the
same (e.g. we have N particles pinned to the origin), the oscillators are indistinguishable
and we require an additional term of 1/N !.

The partition function for a system of distinguishable oscillators is

QN =

∫
dNpdNq

hN
e−βH = QN1 (4.94)

where

Q1 =
1

λ

∫ L

−L
dqe−βmω

2(q−q0)2 ≈ 1

λ

∫ ∞
−∞

dqe−βmω
2(q−q0)2 =

1

λ

(
2π

βmω2

)1/2

(4.95)
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where we have assumed that the oscillators are sufficiently tightly bound to their energy-
minimizing locations that they rarely interact with the wall (so we can replace the integral
from −L to L

QN =
1

hN

(
2πm

β

)N/2( 2π

mωβ

)N/2
= (β~ω)−N (4.96)

If they were indistinguishable, of course, we would simply normalize by N !. We can imme-
diately compute all of the thermodynamic properties of this system:

U = −∂ log(QN )

∂β
= NkBT (4.97)

CV =
∂U

∂T
= NkB (4.98)

A = −kBT log(QN ) = 3NkBT log

(
~ω
kBT

)
(4.99)

p = −∂A
∂V

= 0 (4.100)

S = −∂A
∂T

∣∣∣∣
NV

=
U −A
T

= kB log(QN ) +
kBβ

QN

∂QN
∂β

= −NkB log

(
β~ω

)
+NkB

Note that the equipartition of energy UHO = NkBT , which satisfies the equipartition
theorem of U = fkBT/2 for f = 2N is the number of quadratic terms in the Hamiltonian
(for a one-dimensional oscillator).

4.6.2 Quantum Harmonic Oscillators

Quantum mechanically, there are a discrete set of energy levels for a quantum harmonic
oscillator given by εn = (n + 1/2)~ω. This means that for a single harmonic oscillator in
one dimension, the partition function is

Q1 =
∑
n

e−β~ω(n+1/2) = e−~ωβ/2
∞∑
n=0

(
e−β~ω

)n
=

e−β~ω/2

1− e−β~ω
=

1

2 sinh(~ωβ/2)
(4.101)

For N harmonic oscillators in one dimension, the states are completely independent from
one another so long as they are well-separated, and we can write

QN = QN1 = 2−N sinh−N (~ωβ/2) (4.102)

where each particle is associated with three independent quantum numbers. From this, we
can compute a number of thermodynamic variables.

A = NkBT log[2 sinh(~ωβ/2)] (4.103)
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Note that for T → ∞ (β → 0) we can write 2 sinh(~βω/2) ≈ ~βω + O(β3), so the free
energy scales as A ∼ NkBT log(~ωβ). This is identical to the free energy we found for
the classical oscillator. Thus, at high temperatures we’ll see the same behavior we saw for
the classical case. This is entirely consistent with the world we see: quantum mechanics
begins to look classical as long as the temperature is high enough (which is why the world
we live in looks like it behaves classically!). However, for T → 0 (β → ∞) we find
2 sinh(~βω/2) ∼ e−β~ω/2 + O(e−β~ω/2), and so in this limit A ∼ NkBT~ωβ/2 = N~ω/2.
This is independent of temperature, and is equal to the sum of the ground state energies
of each oscillator.

4.6.3 The physical meaning of the low-temperature limit

Is it physically sensible to find A → N~ω/2 at low temperatures? To understand the
physical meaning of this limit, it is useful to compute the energy,

U = −∂QN
∂β

=
N~ω

2
coth(~ωβ/2) (4.104)

which at high temperatures satisfies

U =
N~ω

2
coth(~ωβ/2) ∼ N~ω

2
×
(

2

~ωβ
+O(β0)

)
= NkBT (4.105)

which is the classical limit. However, at low temperatures there is a difference between the
classical and quantum energies, since coth(x)→ 1 as x→∞ so

U ∼ N~ω
2
6→ 0 (4.106)

as is expected classically. This deviation is due to the fact that quantum systems have
a ground state, with each particle having energy ~ω/2. This means the system doesn’t
behave like a classical harmonic oscillator at low temperatures, with with H =

∑
i p

2
i /2m+∑

imω
2
i q

2
i /2, since the classical oscillator has a lower bound on the energy of E = 0. This

leads to a violation of the equipartition theorem: the particles cannot be represented
by a purely quadratic Hamiltonian, so we do not recover the classically expected energy
U = NkBT at low temperatures. This marks the first time that anything interesting has
happened when we considered quantum mechanics! In the low temperature limit, where we
expect quantum effects to matter (based on our argument about λ in the ideal gas case),
we finally see that the classical prediction is incorrect!

4.6.4 Entropy and the third law

Since U → N~ω/2 in the limit of T → 0, we expect that all particles are in the lowest
energy state. What implication does that have for the entropy of the system? We can
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compute the entropy directly and find that

S =
U −A
T

=
kBβN~ω

2
coth

[
β~ω

2

]
− kBN log

(
2 sinh

[
β~ω

2

])
(4.107)

Taking the T → 0 (β → ∞) limit here is a bit more tedious, since simply replacing
coth(β~ω/2) with 1 and sinh(β~ω/2) with eβ~ω/2 immediately leads to S = 0 in the limit
of T → 0. This limit provides no insight into how fast the limit is reached. Instead of
simply replacing each function by its limit, we can simplify eq. 4.107 b replacing x = ~ωβ/2
and note that coth(x) = (1− e−2x)/(1 + e−2x) and 2 sinh(x) = ex(1− e−2x). We can then
Taylor expand S in terms of y = e−2x to find the T → 0 limit, and a bit of algebra shows
that

S ≈ e−β~ω
(
NkBβω −NkB

)
→ 0 (4.108)

which vanishes exponentially fast. This is physically sensible, because Eq. 4.106 indicates
all of the particles are found in the ground state. If all particles are trapped in exactly the
same state, there’s no disorder at all, and the probability of being found in any particular
state is Ps = δs,0. With all particles being trapped in the same state, the entropy is
expected to be low. Of course, this is also expected from the 3rd law of thermodynamics,
which says S = 0 at T = 0. Taken together, we see that TS is negligible in comparison to
U , and so A = U − TS = N~ω/2 is reasonable.

4.7 Particles with internal degrees of freedom

An ideal gas of particles with no internal structure has the partition function QN = QN1 /N !,
with Q1 = V/λ3 accounting for the three position integrals and three momentum integrals.
A gas of structured particles (say a diatomic molecule) will still have the three center of
mass coordinates and momenta to integrate over, but will also have internal positions and
momenta to integrate over (the vibrational degrees of freedom for a diatomic gas). These
variables are separable, meaning we can write

Q1 =
V

λ3
j(T ) (4.109)

for some internal partition function j(T ) =
∑

ε gεe
−βε. The internal partition function itself

can be subdivided into j(T ) =
∏
i ji(T ) for various types of internal degrees of freedom.

The heat capacity is

CV =
∂U

∂T

∣∣∣∣
NV

= NkBT
∂

∂T
T 2 ∂

∂T

∑
i

log[ji(T )] (4.110)
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For a monotonic gas, rotational and vibrational degrees of freedom do not exist, and the
only degrees of freedom are related to internal spin or angular momentum. For a diatomic
gas, vibrational and rotational degrees of freedom play a role. Assuming the vibrational
states are harmonic, the partition function will be

jvib(T ) =

∞∑
n=0

e−β~ω(n+1/2) =
e−β~ω/2

1− e−β~ω
=

e−Θv/2T

1− e−Θv/T
(4.111)

for the activation temperature Θv = ~ω/kB. If T � Θv, there will be a negligible con-
tribution to the partition function, meaning this degree of freedom is frozen: thermal
fluctuations are not large enough to excite the ground state. Classically, such a constraint
doesn’t exist: there’s no ground state and so there will always be the possibility of exciting
some vibrations. The rotational degrees of freedom can similarly be written in terms of the
angular momentum operator Ĥrot = L̂2/2I, with L̂ the angular momentum operator with
eigenvalues ~2l(l + 1) and I the moment of inertia of the molecule. For a pair of identical
point masses separated by a distance d, I = md2/2.

jrot(T ) =

∞∑
l=0

(2l + 1)e−l(l+1)Θr/T (4.112)

with Θr = ~2/2IkB. The additional factor of 2l+1 is due to the degeneracy of the lth energy
level, with −l < m < l for the azimuthal quantum number. This sum cannot be evaluated
in general, but we can still determine the features of the frozen degrees of freedom: If
T � Θr, there will be no rotations for the diatom since the thermal energy is insufficient
to excite the first excited state. Once the temperature is well above Θr, many energy levels
are excited and the rotational degrees of freedom begin to look classical. We find that
Θr ∼10K and Θv ∼ 100K for a variety of diatomic gasses in general (using common values
for e.g. H2 with parameters d ∼ 10−10m, m ∼ ×10−26kg and ω ∼ 34THz).

For a diatomic atom, then, we expect

• For T < Θr, only translational degrees of freedom play a role, and CV ∼ 3NkB/2.
These are classical degrees of freedom, and won’t be frozen out unless the temperature
is low enough for a classical ideal gas to break down.

• For Θr < T < Θv rotational degrees of freedom play a role as well. Classically, one
would expect the system to have two additional momentum degrees of freedom from
this, giving CV = 5NkB/2.

• For Θv < T , one expects the vibrations to give an additional two active quadratic de-
grees of freedom (momentum in the radial direction and the displacement r), yielding
CV = 7NkB/2.



CHAPTER 4. THE CANONICAL ENSEMBLE (PATHRIA CH 3) 89

For particles with a greater degree of structure (triatomic atoms, coupling between atomic
energy levels and the rotational degrees of freedom, etc), additional terms will emerge in
the partition function. For any independent degree of freedom, though, it will simply add
an additional term to the free energy of the particles, accompanied by its own transition
temperature

4.8 Other Examples of Canonical Systems

4.8.1 Classical Paramagnetism

A collection of non-interacting magnetic dipoles with magnetic dipole moments µ will
tend to align with an externally applied field B with energy E = −µ ·B. |µ| is a property
of the particle, proportional to the current in a loop times the area, µ = I × A for a
classical dipole and proportional to the Bohr magneton µb quantum mechanically (we’ll
discuss the latter in a moment). The direction the moment points is variable, and a strong
magnetic field will tend to align the particles with the field’s axis. The magnetic moments
of the particles won’t be interacting if they’re sufficiently well separated, and the potential
energy can simply be written Upot =

∑
iµi · Bi = Bµi,z for a magnetic field aligned

with the z axis. A static arrangement of dipoles are all distinguishable from one another
(as was the case for the Harmonic oscillator) and can only rotate without translation so
the Hamiltonian doesn’t depend on the momentum of the particles (unlike the Harmonic
oscillator). Classical paramagnetism thus has the Hamiltonian is H = −B

∑
i µi,z, and the

partition function becomes

Q1 =

∫
sin(θ)dθdφeβµB cos(θ) =

4π

βµB
sinh(βµB) (4.113)

where we don’t integrate over the magnitude of µ (which is fixed). For N distinguishable
dipoles we again use the fact that QN = QN1 .

The mean magnetic moment of a single particle, 〈µz〉, is computed as

〈µz〉 = µ〈cos(θ)〉 =
∂ log(Q1)

∂(βB)
= µ

(
coth(βµB)− 1

βµB

)
(4.114)

For low temperatures or strong fields, with βB →∞, the mean magnetization is 〈µz〉 ≈ µ,
with the particles fully aligned with the field as expected. For T →∞ or B → 0, 〈µ〉 ≈ 0,
meaning there is no preferred orientation of the dipoles as expected. We can compute all
of the statistics of this system just as we did before for the classical harmonic oscillator,
with somewhat more complicated expressions:

U = −N〈µz〉B = −NµB
(

coth(βµB)− 1

βµB

)
(4.115)
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A = NkBT log

(
4π

βµB
sinh(βµB)

)
(4.116)

p = 0 (4.117)

S

kB
= −N log

(
4π

βµB
sinh(βµB)

)
+NµB

(
coth(βµB)− 1

βµB

)
(4.118)

and so on, where we’ve ignored energy fluctuations and specific heat to avoid too many
tedious derivatives.

One new quantity of use to compute in the case of the classical paramagnet is it’s sus-
ceptibility to the externally applied field, since that’s an easily experimentally accessible
observation. For historical reasons, the susceptibility is defined as the increase in the to-
tal magnetization of the system to a weak magnetic field, where the total magnetization
M = N〈µ〉/V = ρ〈µ〉 is the total magnetic dipole moment per unit volume. Note that in
chapter ?? we will use a definition of magnetization which does not normalize by volume.
This simply introduces a constant into the definition, and will not change the physics of
the problem. The magnetic susceptibility is defined as the response of the magnetization
to a weakly applied external field, with

χ = lim
B→0

∂M

∂B
= lim

B→0

N

V
× µ

(
− βµcsch2(βµB) +

1

βµB2

)
(4.119)

≈ Nµ

V

(
− βµ

[
1

βµB
− βµB

6

]2

+
1

βµB2

)
(4.120)

=
Nµ2

V 3kBT
(4.121)

where we have Taylor expanded csch(x) in the approximation. This is known as Curie’s
law, which states that

χ =
c

T
(4.122)

for c the Curie constant. Curie’s law was discovered by Pierre Curie (the husband of Marie
Curie) for his PhD dissertation at U Paris in 1895, along with the critical temperature
associated with ferromagnetism (which we’ll talk about later). As a side note, Pierre and
Marie curie both received the Nobel prize for their collaborative discovery of radioactivity,
and their children both received Nobel prizes for their collaborative work on radioactive
elements thirty years later. We’ll be examining Curie’s law again once we develop quantum
statistical mechanics in a few chapters.

4.8.2 Spin-1/2 paramagnetism and two state systems

Quantum paramagnetism arises due to the interaction of an electron or atom’s spin and
angular momentum with the externally applied field. Rather than a vector, the magnetic
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moment is a quantum operator with

µ = g
e

2m
J (4.123)

where J = L + S is the total angular momentum of the particle (incorporating both
spin and angular momentum), and the leading coefficient is difficult to compute directly.
The factor g ≈ 2 is known the Lande factor. Ignoring the difficulty in computing these
coefficients (which requires quantum electrodynamics), we expect that the µ̂ operator will
be quantized, having discrete values

µz = g
e~
2m

mµ = gµBmµ (4.124)

where the Bohr magneton is e~/2m and mµ is an integer between −|l − s| and l + s. For
electrons with spin 1/2 and no angular momentum, or for atoms in the ground state with
a single electron in the s-orbital (e.g. H, Li, Na, K, Rb, Cs), the magnetic moment can
take on only one of two values: parallel with the magnetic field or antiparallel. Pathria has
a calculation that includes other energy levels, which is not particularly illustrative, and
here we’ll focus only on the two-level system.

The energy levels are defined as En = −ε or ε, where ε = gµb denotes the energy of a
particle aligned with the magnetic field. This system is separable, so we can write the
partition function as QN = QN1 . The partition function for a single particle is

Q1 =
∑
i

e−βεi = eβε + e−βε = 2 cosh(βε) (4.125)

so,

QN = 2N coshN (βε) (4.126)

The mean energy of the system is

U = −∂ log(QN )

∂β
= −N ∂ log(2 cosh[βe])

∂β
= −Nε sinh(βε)

cosh(βε)
= −Nε tanh(βε) (4.127)

Taking the limits of high or low temperature:

• As T →∞, β → 0 and we find U = 0. That’s convenient, it implies equal occupancy:
half of the particles have energy ε and half have energy −ε.

• As T → 0, β →∞ and tanh(βε)→ 1 for all ε > 1. That means U → −Nε, which is
again expected: the lower energy state is fully occupied.
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We can compute the number of particles in the higher energy state, denoted n+, with
N − n+ the number of particles in the lower energy state. We know

ε〈n+〉 − ε(N − 〈n+〉) = U (4.128)

〈n+〉 =
N

2

(
1− tanh(βε)

)
(4.129)

Fluctuations can also be computed here,

〈E2〉 − 〈E〉2 =
∂2 log(QN )

∂β2
= Nε

∂ tanh(βε)

∂β
= Nε2sech2(βε) (4.130)

where we ended up with expected behavior again:

• As T → ∞ (β → 0), 〈E2〉 − 〈E〉2 = Nε2, linear in N and proportional to ε2. This
means fluctuations are nonzero, have the proper dimensions, and still satisfy our
expectations that the relative RMSD fluctuations scale as N−1/2.

• As T → 0 (β → ∞), the relative fluctuations vanish exponentially fast. This is
because the system is frozen into a single state (all in the lower energy state).

The free energy of such a system is

A = −kBT logQN = −NkBT log(2 cosh(βε)) (4.131)

from which we can determine

S =
U −A
T

= NkB log[2 cosh(βε)]− kBNεβ tanh(βε) (4.132)

This shows that in the limit of T → ∞ (where β = 0), S = NkB log(2), a nonzero value
that is the maximum entropy possible for this system. Note that this maximum entropy is
independent of the energy levels (ε). Entropy is maximized when the various energy levels
are equally occupied, regardless of the value of energy (since entropy is fundamentally
related to distributions as we have seen in many contexts). In the limit of T → 0, we
see 2 cosh(βε) ≈ e+βε, so that S → 0 for T → 0. Just as was the case for the harmonic
oscillator, we see the entropy vanishes in the limit of T → 0, due to the fact that each
particle is in the lowest energy state, with no disorder.

4.8.3 The Zipper Model

The zipper model appears in Kettel’s Thermal Physics, and models the unzipping of a
zipper from right to left. This is a simple-minded model of DNA melting (which does not
describe the process completely). We consider a 1-dimensional chain of sites, with each
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site in one of two potential states: open or closed. Opening has the energy penalty ε, and
the closed state has zero energy. Importantly, a site can only be open if the one to the
right of it is also open. Thus, the energy of all links closed is 0, the energy with one link
open is ε (with no degeneracy), the energy with two links open is 2ε (with no degeneracy)
and so on. Thus, the partition function is

QN =
∑

s open
e−βEs =

N−1∑
s=0

e−βsε =
1− e−Nβε

1− e−βε
(4.133)

We can easily compute the mean energy

U = −∂ log(QN )

∂β
=

∂

∂β

(
log[1− eβε]− log[1− e−Nβε]

)
(4.134)

=
Nεe−Nβε

1− e−Nβε
− εe−βε

1− e−βε
(4.135)

For small T (β →∞) the mean energy is zero. Expected. For large T (β → 0), we have to
first order in β

U ≈ (N − 1)ε

2
(4.136)

We note that we could have gotten these two results without going through the effort
of actually computing anything. We can actually compute these limits pretty easily
though:

U =

∑
sEse

−βEs∑
s e
−βEs =

∑
s(εs)e

−βεs∑
s e
−βεs (4.137)

For T → ∞ and β → 0, the exponential terms are all close to 1 and the energy levels all
contribute equally to the sum, so

U(β = 0) = ε

∑N−1
s=0 s∑N−1
s=0 1

= ε
N(N − 1)/2

(N − 1)
=

(N − 1)ε

2
(4.138)

For T → 0 and β → ∞, only the s = 0 term in each sum will contribute, since all other
terms are exponentially smaller. Since the first term in the numerator is multiplied by s,
We can then approximate

U(β =∞) ≈ 0 (4.139)

where we have neglected terms scaling as e−βε. Note that the mean number of open links
can be extracted from the average energy, with U = ε× 〈s〉.
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4.8.4 The random link model

The zipper model is straightforward, because it is very easy to evaluate. An equally simple
model to evaluate is the random link model, where the left-right asymmetry of the zipper
model is not required. If we were to imagine a zipper where openings or closings can
happen anywhere along the chain, we would have

QN =
N−1∑
s=0

e−βεs × (number of ways to have s open out of N − 1) (4.140)

=
N−1∑
s=0

(
N − 1

s

)
e−βεs = (1 + e−βε)N−1 (4.141)

from which the mean energy can be easily computed:

−(N − 1)
∂

∂β
log[1 + e−βε] =

(N − 1)εe−βε

1 + e−βε
(4.142)

For T → 0 (β → ∞)the average energy is 0 again (as it was for the zipper model), since
there is an energetic cost for the open state. For T → ∞, the mean energy is again
U = (N − 1)ε/2, as it was for the zipper model. These two models give the same limiting
behavior at low and high temperatures. Are there any difference between them?

4.8.5 Differences between the zipper and random link models

The differences in the models are not apparent by looking at the mean energy of the system,
but can be seen by looking at the fluctuations of the energy. We know that

〈E2〉 − 〈E〉2 = −∂〈E〉
∂β

(4.143)

which for the zipper model satisfies

〈∆E2〉zipper
ε2

=

∑
s s

2e−βεs∑
s e
−βε −

(∑
s se
−βs∑

s e
−βs

)2

(4.144)

→
∑

s s
2∑

s 1
−
(∑

s s∑
s 1

)2

β → 0 (4.145)

=
(N − 1)(2N − 1)

6
− (N − 1)2

4
∼ N2

12
(4.146)

Here the fluctuations in energy are on the order of N2, not N . This means fluctuations in
the zipper model will be over the entire length of the zipper, with the zipper fluctuating
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between nearly-fully-open and nearly-fully-closed states at equilibrium. For the random
model, this is not the case:

〈∆E2〉random
ε2

=

∑
s

(
N−1
s

)
s2e−βεs∑

s

(
N−1
s

)
e−βε

−
(∑

s s
(
N−1
s

)
e−βs∑

s

(
N−1
s

)
e−βs

)2

(4.147)

→
∑

s s
2
(
N−1
s

)∑
s

(
N−1
s

) − (∑s s
(
N−1
s

)∑
s

(
N−1
s

) )2

β → 0 (4.148)

=
N(N − 1)2N−3

2N−1
−
(

(N − 1)2N−2

2N−1

)
∼ N

4
(4.149)

which does have the fluctuations scaling linearly with N . The fluctuations in the random
model behave as we are used to, with the mean number of links open being sharply peaked
around (N − 1)/2, whereas in the zipper model the mean is (N − 1)/2 but the fluctuations
are much larger and the distribution cannot be called ‘sharply peaked.’

4.9 Summary

This chapter introduced the partition function for a canonical ensemble, a system at ther-
mal equilibrium with a heat bath. This removes the constraint of fixed energy that was
required in the microcanonical ensemble, which was useful only for an isolated system
(where no energy can be lost to the environment). The canonical ensemble truly permits
heat exchange with a reservoir, and thus is a realistic model for a thermodynamic system
at temperature T . We showed that thermodynamic quantities for such a system can be
derived by defining a partition function Q =

∑
ε e
−βε, summing over all accessible energy

states normalized by the thermal energy kBT . We put in a good deal of work into develop-
ing the tools to extract the ensemble average for quantities of interest (e.g. U = 〈H〉 or 〈µ〉)
by manipulating the partition function. We proved a few general theorems, including the
Equipartition of energy for quadratic Hamiltonians and the Virial theorem. We found that
the quantum mechanical version of these systems behave classically in the high temperature
limit but do not behave classically in the low temperature limit. The canonical ensemble
is fundamental in statistical mechanics, and most of the methods used in this section will
be re-used throughout the course.

4.9.1 Homework Problems

1. Suppose a one-dimensional classical particle has the potential V (q) = cq2−gq3−fq4,
with f and g both small but positive. Show that

CV ≈
3kBT

2

(
f

c2
+

5g2

4c3

)
〈q〉 ≈ 3gkBT

4c2
(4.150)
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How small must f and g be for these results to be valid?

2.

g

The figure above
depicts two different geometries containing N noninteracting indistinguishable clas-
sical particles of mass m in a gravitational field: a cylinder with height H and radius
R whose axis is aligned with the direction of the gravitational force, and a sphere
of radius R. The potential energy for each non-relativistic particle is V (zi) = mgzi,
and both confining volumes are sitting on the ground at z = 0 (where V (z) = 0).
For both geometries, determine the following:

(a) The partition function Q exactly. Specifically determine Q in the limit of small
and large T . Under what conditions do you recover the partition function for
an ideal gas?

(b) The internal energy U for small and large T . Based on this, explain what is
happening physically at low and high temperatures.

(c) The mean height of a particles, 〈zi〉, for small and large T . Does the low-T limit
agree with your results in 2b? What is the physical meaning of the high-T limit.

3. Consider a Freely Jointed Chain (FJC) in three dimensions under tension: a chain
of bonds, each of which has length exactly a, whose directions are randomly chosen.

where bi = |ri+1 − ri| and with the rigid constraint that |bi| = a. The end-to-end
distance vector is defined as Ree = rN+1− r1, and Z = Ree · f̂ is the extension along
the force axis, with f̂ the unit vector in the direction of the tension. The energy of
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this system is

H = −
N∑
i=1

f · bi (4.151)

(a) Show that the average extension for the FJC is

〈Z〉 = Na

[
coth(aβf)− 1

aβf

]
(4.152)

Explicitly compute an approximate expression for 〈Z〉 for small f . Hint: this
looks pretty similar to the expression for the mean magnetic moment in a clas-
sical paramagnet. That may be a useful guide.

(b) Determine the end-to-end fluctuations of the FJC, 〈Z2〉− 〈Z〉2. What does this
converge to in the limit of f → 0? From this, infer the value of 〈R2

ee〉f=0 for the
FJC.

4. Consider a three dimensional Gaussian chain of bonds under tension, with energy

H =
3kBT

2a2

N∑
i=1

u2
i − f ·

N∑
i=1

ui (4.153)

where ui = ri+1− ri is the ith bond vector of the chain and f is the external tension.
The magnitude of ui is not constrained in the Gaussian chain (unlike the FJC).

(a) Determine the extension 〈Z〉 for the Gaussian chain. How does it compare to
the f → 0 limit of the FJC?

(b) Compute 〈R2
ee〉f=0 for the Gaussian chain. How does it compare to 〈R2

ee〉f=0

for the FJC from problem 1(b)?

(c) Compute the mean squared fluctuations in the end to end distance, 〈Z2〉−〈Z〉2.
How do the fluctuations depend on f for the Gaussian chain? Do they agree
with the FJC?

5. Suppose a diatomic molecule is modeled using the classical Hamiltonian

H2 =
(p2

1 + p2
2)

2m
+
κ(r1 − r2)2

2
(4.154)

representing two particles harmonically bound to one another.

(a) Compute the partition function for N indistinguishable diatomic molecules and
determine the mean energy. Does this result agree with the Equipartition and
Virial Theorems?
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(b) Show that for this model the heat capacity CV is not equal to 7NkB/2, the
high-temperature limit of the diatomic molecule described in class. Why is that
limit not recovered using this model?

(c) Compute the the root mean square separation
√
〈(r1 − r2)2〉 and the mean

separation 〈|r1 − r2|〉. Are they the same? Do they have the same temperature
dependence?

Hint: a change of variables involving the center of mass of the molecule may be
helpful in evaluating the position integrals.

6. In contrast to 5 a diatomic molecule is modeled using the classical Hamiltonian

H2 =
(p2

1 + p2
2)

2m
+
κ(|r1 − r2| − l)2

2
(4.155)

with l the rest length of the harmonic bond. Show that for this model the heat
capacity CV is equal to 7NkB/2 in the limit of κ→∞. Explain why this model does
recover the expected limit. Note: you may encounter error functions in this problem.

7. Suppose a triatomic molecule has the classical Hamiltonian

H3 =
(p2

1 + p2
2 + p3

3)

2m
+
κ

2

[
(r1 − r2)2 + (r2 − r3)2 + (r1 − r3)2

]
(4.156)

representing three particles all bound to one another.

(a) Determine the partition function for N indistinguishable triatomic molecules
and the mean energy.

(b) Show that it is generally true that, for any n,∑
i

〈(ri −R)2〉 =
1

n

∑
i>j

〈(ri − rj)
2〉 (4.157)

where R = n−1
∑

i ri.

(c) Find 〈(ri −R)2〉, with R = (r1 + r2 + r3)/3 the center of mass of the molecule.
Does this mean distance increase or decrease with temperature, and does that
make sense physically?

Hint: It may be helpful to know that
∫∞
−∞ dxdye

−ax2−ay2−bxy = 2π/
√

4a2 − b2



Chapter 5

The Grand Canonical Ensemble
(Pathria Ch 4)

We previously worked out the statistics for a canonical ensemble, a system of N particles
in volume V at thermal equilibrium with a heat bath at temperature T . This allowed us
to compute the probability of that system at any of its accessible energy values, and we
found pr ∝ e−βEr . This was useful because we found we could use this to compute the
thermodynamics of such systems. However, there is a major limitation of this approach:
we’ve permitted E to fluctuate but N is permanently fixed. To generate the canonical
ensemble, we imagined randomly choosing N particles confined to a volume V , which was
a artificial but convenient choice. Instead, we now imagine sampling the volume V without
constraining the number of particles that are found in the volume, and we do so N times.
The total energy will be E for the N samples. Sampling without constraining the number of
particles in any subsample is a more physically meaningful method of sampling (as it would
be very difficult to actually sample holding N and V fixed, but it is very easy to sample
a fixed volume without constraint on the number of particles in the volume). This defines
the Grand Canonical Ensemble, where the energy and number of particles are allowed to
fluctuate when in contact with a reservoir.

5.1 The Grand Canonical Ensemble

5.1.1 The most probable configuration

When we worked out the canonical partition function, we did so by identifying the number
of ways to find a given outcome (W = M !/

∏
sms! where, ms were the number of systems

99
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with energy level s). Now things are a bit different since the systems can have a different
number of particles. The same approach still works, though, we can write

W =
M !∏
rs nrs!

≈M log(M)−
∑
rs

mrs log(mrs) (5.1)

where nrs is the number of systems simultaneously composed of Nr particles with the entire
subsystem in energy state s (so we’re specifying the total energy, not the individual energies
of each particle). This is straightforward to deal with in exactly the same way as before:
we maximize W subject to the constraints

M =
∑
rs

mrs E =
∑
rs

εsmrs N =
∑
rs

Nrmrs (5.2)

where the first constraint fixes the number of subsystems we’re looking at, the second fixes
the average energy of all subsystems and the third the average number of particles in the
subsystems. Essentially, this means we’re choosing the most likely configuration that is
consistent with our various constraints on the total behavior of the subsystems. As was the
case in the canonical ensemble, we perform this maximization using Lagrange multipliers,
finding

−
(

log(mrs) + 1 + α+ βεs + δNr

)
= 0 (5.3)

From this, we find that

m∗rs
N

=
e−βεs−δNr∑
rs e
−βεs−δNr (5.4)

This is the same thing we computed for the canonical ensemble, except that the probability
of finding Nr particles in the system is now exponentially distributed as well. These are
the most probable numbers of sates, and we state without proof that 〈nrs〉 ≈ n∗rs, just like
we did before. Even Pathria doesn’t bother to prove this directly, although it has been
shown to be the case in the literature.

5.1.2 Connecting to thermodynamics

In order to actually interpret the meaning of β and δ, we now have to link the distribution
of states to thermodynamics, as we did before. If we assume that the entropy satisfies the
Shannon form, then we immediately find

S

kB
= −

∑
states

pstate log(pstate) =
∑
rs

e−βεs−δNr∑
r′,s′ e

−βEr′−δNs′
log

(
e−βεs−δNr∑

r′,s′ e
−βEr′−δNs′

)
]
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= − 1

Q
∑
rs

e−βεs−δNr
[
− βεs − δNr − log(Q)

]
(5.5)

= β〈E〉+ δ〈N〉+ log(Q) (5.6)

with 〈E〉 the average energy of one of our subsystems, 〈N〉 the average number of particles
in one subsystem, and where we have defined the Grand Canonical Partition function

Q =
∑
rs

e−βεs−δNr . (5.7)

Rearranging this shows that

− log(Q) = β〈E〉 − S

kB
+ δ〈N〉 (5.8)

We recall from chapter 1 that we defined the grand thermodynamic potential as Φ =
E−TS−µN = −pV (with independent variables T , µ and V ), and a bit of algebra shows
that we rewrite this as − pV

kBT
= E

kBT
− S

kB
− µN

kBT
. From this, we can identify the physical

meaning of the grand partition function and the two Lagrange multipliers.

−pV = Φ = −kBT log(Q) β =
1

kBT
δ = − µ

kBT
(5.9)

There are other methods to show this connection to thermodynamics that do not require
the assumption that S = −

∑
ps log(ps). Pathria works through this with a different

method, but with the same end result. Thus, our Lagrange multipliers turn out to be
related to the temperature and chemical potential.

5.1.3 Fugacity

It is generally useful to define the fugacity

z = eµ/kBT (5.10)

It’s a strange word, and easier to remember by noting it comes from the latin root as
‘fugitive,’ relating to how particles will leave the system as we’ll see in later sections of this
chapter. The grand partition function can thus be evaluated as

Q =
∑
r

zNr
∑
s

e−βεs(Nr,V ) =
∑
r

zNrQNr,V =
∞∑
n=0

znQn (5.11)

relating the grand partition function to the partition function we’ve already computed. In
the last equality, we’ve assumed that any integer number of particles is possible in a state,
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which may not always be true for every system (but often is). The grand canonical partition
function is in fact a Z-transformation of the canonical partition function. A Z transform
is of the form f̃(Z) =

∑∞
n=0 Z

−nfn (note the identity Z = 1/z produces eq. ??), which
is effectively a Laplace transform for a discrete system (where f̃(s) =

∫∞
0 dxe−sxf(x)).

Much like a Laplace transform, you can easily use a tabulated list of transforms to infer
the canonical partition function if you know the grand partition function.

5.1.4 Thermodynamic variables and potentials

We can determine any of our common thermodynamic variables using the grand partition
function, similar to what we did before. Specifically, we have

p =
kBT

V
log(Q) (5.12)

N = kBT
∂ log(Q)

∂µ
= z

∂ log(Q)

∂z
(5.13)

where the average number of particles N = 〈N〉 can be written in terms of a derivative
with respect to µ or with respect to z. We can also compute

U =
1

Q
∑
rs

εse
−βεs+βµNr =

1

Q
∑
rs

εsz
Nr(β)e−βεs = −∂ log(Q)

∂β

∣∣∣∣
z

(5.14)

where the derivative with respect to β now must be performed at constant z when com-
puting quantities involving the energy. Keep this fact in mind when computing the mean
energy, as it is easy to accidentally include terms that involve µ if you are not careful.
Another thermodynamic quantity is the free energy,

A = U − TS = −pV + µN = −kBT log(Q) + kBT
∂ log(Q)

∂µ
(5.15)

=
µ2

β

(
− 1

µ2
log(Q) +

1

µ
∂ log(Q)

)
(5.16)

=
µ2

β

∂

∂µ

(
log(Q)

µ

)
(5.17)

Note that Pathria writes Nµ = NkBT log(z) = kBT log(zN ), which leads to the expression
A = −kBT log(Q/zN ). This is entirely correct, but we will prefer to use eq. 5.17 since
the right hand side does not depend on the thermodynamic average N . Note that we
can still compute the entropy in the same way as we did in the canonical ensemble, with
S = (U − A)/T . This expression does not reduce in any meaningful way, and we omit
writing it here.
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Fluctuations can also be determined with relative ease from the grand partition function,
as we saw for the partition function previously. In particular, it’s straightforward to see
that

〈E2〉 − 〈E〉2 =
∂2 log(Q)

∂β2

∣∣∣∣
z

(5.18)

〈N2〉 − 〈N〉2 = (kBT )2∂
2 log(Q)

∂µ2
= z

∂

∂z
z
∂ log(Q)

∂z
(5.19)

5.2 The Interpretation of Chemical Potential

5.2.1 Thermodynamic discussion

We discussed the meaning of chemical potential in the context of thermodynamics, but
have not revisited the topic since we began discussing statistical mechanics. It is worth
restating the discussion from thermodynamics and addressing how chemical potential is to
be interpreted in the grand canonical ensemble. In thermodynamics, we found that

dA = −SdT − pdV + µdN (5.20)

so at constant temperature and volume, µ is the free energy required to add a new particle
to the system. If µ > 0, you must do work to add a new particle from outside of the system.
If µ = 0, there is no energetic cost to adding a particle (for example, adding a photon to a
system has a very low chemical potential). If µ < 0, adding a new particle reduces the free
energy of the system, and it’s energetically favorable to add particles.

Thermal equilibrium was discussed extensively in the previous chapters, where two sys-
tems were allowed to exchange energy until they equilibrated to be at the same tempera-
ture: T1 = T2 defines thermal equilibrium between two systems. This is true of chemical
equilibrium as well: at chemical equilibrium two systems that are allowed to exchange
particles must settle on having the same chemical potential. This arises from thermody-
namics, where the system has the total number of particles N = N1 +N2 and free energy
A = A1(N1) +A2(N2). At chemical equilibrium,

0 = dA =
∂A

∂N1
dN1

∣∣∣∣
TV

+
∂A

∂N2

∣∣∣∣
TV

dN2 = µ1dN1 + µ2dN2 = (µ1 − µ2)dN1 (5.21)

so µ1 = µ2 at equilibrium.

We can see this directly from the ideal gas in the microcanonical ensemble, where

A = U − TS =
3NkBT

2
− T

[
NkB log

(
V

Nλ3

)
+

5NkB
2

]
= −NkBT log

(
V

Nλ3

)
−NkBT
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Spontaneous flow

Hard to add Easy to add

Spontaneous flow

Figure 5.1: Spontaneous motion of particles between the reservoir and subsystem during
chemical equilibration. A bath with a large µ will readily add particles to the subsystem
and resist the addition of a new particle to the total system of reservoir+subsystem. The
opposite is true for negative µ.

µ =
∂A

∂N

∣∣∣∣
TV

= −kBT log

(
V

Nλ3

)
= kBT log(ρλ3) (5.22)

Note that we used Helmholtz free energy in this calculation because A is minimized at
thermal equilibrium. It’s always difficult to add a new particle to an ideal gas, since the
particle will collide with the walls increasing the energy (recall that E ∝ N , so particles
increase the energy). However, the addition of a new particle also increases the entropy
of the system by adding additional accessible states, and µ = ∂U/∂N |SV is the energy
associated with adding a particle to the system at constant entropy. It is possible for µ to
be negative even if particles add energies to the system, due to the change in entropy it
brings. We see in particular that µ = kBT log(ρλ3) < 0 for ρ < λ−3 and µ > 0 for ρ > λ−3:
so for sufficiently dilute gasses the chemical potential is negative and particles can be readily
added. Adding new particles increases the chemical potential in the canonical ensemble
(since µ increases as log(N)).

5.2.2 Chemical potential in the grand canonical ensemble

In the grand canonical ensemble, we can determine the relationship between the number
of particles and the chemical potential for an ideal gas via

Q =
∞∑
n=0

zn

n!

(
V

λ3

)n
= exp

(
zV

λ3

)
(5.23)

so that the mean number of particles is

N = z
∂ log(Q)

∂z
=
zV

λ3
(5.24)

which increases with z (and thus increases with µ for fixed T ). That is, if µ is larger
(meaning z is larger), the mean number of particles is larger in the grand canonical ensem-
ble. This seems intuitively to violate the thermodynamic definition of chemical potential:
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thermodynamically a larger value of µ implies a greater resistance to adding a particle to
the system, while in the grand canonical ensemble a larger value of µ implies more particles
in the subsystem.

The apparent inconsistency here is due to the fact that the grand canonical ensemble is
not isolated, but rather at chemical equilibrium with a bath (diagrammed in Fig. 5.1).
The bath has chemical potential µ, and if µ > 0 it is harder to add a new particle to the
bath. That means that particles will be more readily removed from the bath and added
to the subsystem at high µ, i.e. that particles will spontaneously flow from the bath to
the subsystem. Since N is the number of particles found in the subsystem, it is physically
meaningful to find N increasing with z, as particles want to leave the reservoir and enter the
subsystem spontaneously. At chemical equilibrium, of course, this process will halt when
µreservoir = µsubsystem. In the opposite limit, if µ < 0 then particles will spontaneously
leave the subsystem and enter the bath, since that process is energetically favorable. µ < 0
will reduce the number of particles in the subsystem, consistent with the grand canonical
ensemble.

This is completely sensible in the context of chemical equilibrium, but has a number of
conceptual implications:

• µ = kBT log(ρλ3) in the system and reservoir for an ideal gas. Note that this relation
depends on the density in the reservoir being equal to the density in the subsystem
(ρbath = ρsys), but we are not explicitly defining the reservoir statistics! The volume
Vres and number Nres = Ntot−N are not explicitly computed. In the absence of this
calculation, the ‘correct’ value of µ can’t be computed explicitly: it depends on the
chemical potential of a system we haven’t described. Instead of computing µbath, we
simply choose the value of µ to satisfy the observed value of 〈N〉.

• The internal chemical potential of the entire system of reservoir+subsystem is still
µ = kBT log(λ3ρ) (if it’s an ideal gas), so increasing N increases the chemical po-
tential. The more particles one adds, the more difficult it is to add particles, as
is expected when we refer to internal chemical potential. However, if we were to
force a particle into the reservoir+subsystem, we would expect to see an increase in
〈N〉, since we have one more particle in the total system. Thus, as µ (the chemical
potential for the entire system) increases, the number of particles in the subsystem
increases.

Chemical potential can be a confusing topic in the context of statistical mechanics, because
one must consider the reservoir when talking about µ at chemical equilibrium. This is true
of temperature too: out of thermal equilibrium the temperature of the cooler system will
increase until T1 = T2. Because we have a more intuitive understanding of temperature
from our usual lives, thermal equilibrium often feels relatively natural and obvious.

Chemical potential has properties similar to temperature. In the Grand Canonical Ensem-
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ble, the chemical potential is a proper variable we have control over (just like temperature),
where µ is controlled physically by adjusting the density of the reservoir (for an ideal gas
at least), as in the canonical ensemble we adjust the temperature of the reservoir to change
the temperature of the subsystem. However, regardless of the mechanism of control, the
chemical potential of the subsystem is most easily chosen such that the value 〈N〉 matches
the experimentally observed value, and is not computed explicitly (since we would need to
know the properties of the reservoir).

5.3 Chemical equilibrium between phases

5.3.1 A simple model for ideal gasses and solids

The grand partition function for noninteracting systems is trivial to compute, because we
found that QN (V, T ) = Q1(V, T )N for distinguishable and QN (V, T ) = QN1 (V, T )/N ! for
distinguishable and indistinguishable particles, respectively. For indistinguishable systems
this means we can write

Qindisting =
∞∑
n=0

zn
Qn1 (V, T )

n!
= ezQ1(V,T ) (5.25)

whereas for distinguishable particles, we find

Qdisting =
∞∑
n=0

znQn1 (V, T ) =
1

1− zQ1(V, T )
(5.26)

Note that distinguishable particles have a constraint on the fugacity for the convergence
of the grand partition function: Q converges only if |zQ1| < 1. No such convergence
constraint exists for an indistinguishable gas.

For an ideal gas, we determined the partition function was proportional to V , and in this
section we define

Q1(V, T ) = V f(T ) ideal gas (5.27)

where we had f(T ) = λ−3 for an ideal gas. Any classical gas whose statistics do not depend
on position will have Q1 ∝ V for some constant of proportionality depending on T (which
we call f(T )). In this case, our thermodynamic variables are easily computed:

Ngas = z
∂ log(Q)

∂z
= V zf(T ) (5.28)

〈N2
gas〉 − 〈Ngas〉2 = z

∂Ngas

∂z
= Ngas (5.29)
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Note that the particle fluctuations in the gas phase satisfy 〈∆N2
gas〉/〈N2

gas〉 = 1/Ngas, with

the relative root mean square fluctuation scaling as N
−1/2
gas . A similar N

−1/2
gas was found

in the root mean square energy fluctuations in the canonical ensemble, and this implies
the statistics of the system are sharply peaked around the mean value of N , exactly as we
expect from the construction of the grand canonical ensemble.

When we talked about the harmonic oscillator and the paramagnet in Chapter 4, we argued
that since they were pinned at distinct locations they were distinguishable. A simple model
for a solid phase is a set of particles pinned to a lattice, meaning it is composed of a system
of distinguishable particles. Because none of these particles interact with the walls of the
container, the canonical partition function for one particle can be written

Q1(V, T ) = g(T ) ideal solid (5.30)

with no dependence on the volume. For a 1-dimensional Harmonic oscillator, this was
g(T ) = (β~ω)−1. For these systems, we can take thus Qdisting = (1 − zg(T ))−1. Thermo-
dynamic variables can again be computed with

Nsolid =
zg

1− zg
. (5.31)

Note that we can solve for z in terms of g and find z = Nsolid/[g(T )(Nsolid + 1)]. This
has allowed us to write the fugacity z in terms of the mean number of particles in the
solid phase, N . It will often be the case (as discussed below) that we will chose z (or
equvialently, µ) to be the value that satisfies 〈nr〉 = Nsolid, rather than choosing a specific
value of µ and determining Nsolid from that.

We can also compute the fluctuations in the number of particles

〈N2
solid〉 − 〈Nsolid〉2 = zsolid

∂〈Nsolid〉
∂z

=
zsolidg

(1− zsolidg)2
(5.32)

= N(N + 1) (5.33)

This means 〈∆N〉2/〈N〉2 ∼ N0, which imply the fluctuations in the number of distinguish-
able particles will be enormous: the variance is comparable to the mean, so if we have
N ≈ 1023 particles on average in the solid, there will still be a non-negligible probability
of seeing N = 0 particles in the system.

Note also that

Uindisting = −
∂ log(Qindisting)

∂β

∣∣∣∣
z

= NkBT
2 f
′(T )

f(T )
(5.34)

Udisting = −
∂ log(Qdisting)

∂β

∣∣∣∣
z

= NkBT
2 g
′(T )

g(T )
(5.35)
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which differ only in the form of the partition function. There is no dependence of the
energy in either case on the volume of the system. The pressure can likewise be computed,
with

pindisting =
kBT log(Qindisting)

V
= zkBTf(T ) (5.36)

pdisting =
kBT log(Qindisting)

V
= −kBT

V
log(1− zg) (5.37)

The pressure for the harmonic oscillators vanish for large V , since the particles rarely
interact with the walls. It is worth noting that for the ideal gas, pV = NkBT , and for
the ideal solid oscillator pV = −kBT log(1 − zg) = kBT log(N + 1). For N → ∞, pV is
negligible in comparison to Nµ or U in the solid phase.

5.3.2 Equilibrium between phases

To maintain chemical equilibrium between the phases, it must be that zgas = zsolid. We
note that 〈N〉 ∝ (1− zg)−1, so if z ≈ g(T ) the number of particles found in the solid phase
will be large. In this limit, we can write zsolid ≈ 1/g(T ), and combining this with the fact
that zgas = Ngas/V f(T ) we find that zgas = zsolid requires Ngas ≈ V f(T )/g(T ) ≈. Note
that this implies ρgas = f(T )/g(T ) is the density of the gas, a function of temperature but
not explicitly of the chemical potential.

Importantly, this implies the existence of a critical temperature (see Fig. 5.2) for an
equilibrium between solid and gas to exist. If there are Ntot particles in the system,
equilibrium is impossible if T > Tc, where Tc is defined via f(Tc)/g(Tc) = ρ and ρ the
density of the gas phase. For T > Tc the ratio f(T )/g(T ) > ρ is impossible, since the
density of the gas would be larger than the total number N (normalized by the fixed
volume V ). A solid phase can only form for sufficiently low temperatures, with T < Tc,
which is determined solely by the ratio of the partition functions of the two phases.

Note that there is a counterintuitive element to this result, since the relative root mean

square fluctuations in the gas scale as
√
〈N2

gas〉/〈Ngas〉2 − 1 ∼ N−1/2
gas but√

〈N2
solid〉/〈Nsolid〉2 − 1 ∼ N0

solid. One might reasonably wonder how the fluctuations in

the number of particles can differ, since one might expect that changes in the particles in
the gas phase would be precisely matched by particles in the solid phase. This seeming
discrepancy is resolved by noting that the total number can vary, since the system is at
equilibrium with an external reservoir. In this model, we have not fixedNtot = Nsolid+Ngas.
We have written a partition function in terms of separable Hamiltonians:

Qtot = QgasQsolid =
∑
n

znQngas
∑
n

znQnsolid =
ezQgas

1− zQsolid
(5.38)
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Note that a constraint on the total number of particles is not imposed in this. If we wished
to have a fixed number of particles, we should instead compute a partition function in the
canonical ensemble involving coupled Hamiltonians:

QmixedN =
N∑
n=0

znzN−nQngasQ
N−n
solid = zN

N∑
n=0

QngasQ
N−n
solid (5.39)

where the index n indicates the number of particles in the gas phase, and the number of
particles in the gas phase is fixed at N − n for N the total number of particles. Note that
if we sum QmixedN over all possible values of N , we will find

Qtot =

∞∑
N=0

QmixedN =
∑
N

∑
n

znQngasz
N−nQNsolid = QgasQsolid (5.40)

which is a trick we will make use of in the next chapter. Variations in the number of
particles is irrelevant in the limit of large Ntot (since 〈N2

tot〉− 〈Ntot〉2 ∝ 〈Ntot〉), but as long
as there are many particles in the system these variations are negligible. Differences in
the fluctuations between solid and gas phase must be completely accounted for by excess
variation in the total number of particles, but if the variation in the total number is
negligible then this difference must also be negligible.

T

Figure 5.2: Density of the gas phase as a function of temperature for the gas-solid interface
for a fixed total number of particles in the system. The density of the gas increases with
temperature, until reaching Tc at which the density is constant (having value ρ = Ntot/V )
and no particles are in the solid phase. In the grand canonical ensemble, the density of
the gas phase is maintained at ρreservoir, with any excess particles being added to the solid
phase.

5.4 Summary

In this chapter we’ve defined the grand canonical ensemble in much the same way as the
canonical ensemble. We showed that permitting fluctuations int he number of particles was
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relatively straightforward in the same manner as fluctuations in energy, and we are able to
connect the resulting grand partition function to a number of thermodynamic variables was
straightforward. The mechanics of manipulating the grand canonical ensemble is similar
to the canonical ensemble, although care is needed in order to remember the differences in
how to compute mean properties of these different ensembles (in particular, differentiation
with β is risky without accounting for fixed z). The concept of the chemical potential can
be easily misinterpreted, because the chemical potential depends on the equilibrium of the
system and the reservoir, and the equilibration between these two systems can sometimes
feel counterintuitive.



Chapter 6

The Foundations of Quantum
Statistics (Pathria Ch 5-6)

Classical statistical mechanics was shown to give physical insight into the meaning of
thermodynamics, provided a framework for analyzing many different systems, and made
experimentally falsifiable predictions that were later demonstrated to be correct. There’s
a problem, though: everything we did classically is wrong, and all of the previous chapters
rely on fundamentally incorrect assumptions. All particles are truly quantum mechanical,
and we did not correctly account for quantum mechanics in the previous chapters. In
this chapter, we will more fully consider the meaning of an ensemble and what’s meant
by the energy in a microstate. We’ll find that our treatment of indistinguishability was
fundamentally flawed in the previous chapters, correct only at high temperatures, and
recover the correct statistics by understanding the underlying quantum mechanics properly.
This chapter will give the foundation required for understanding the statistics of particles
correctly.

6.1 The Quantum Microcanonical Ensemble

6.1.1 Constant Energy Ensembles

The classical theory of statistical mechanics relied on energy constraints, either through a
fixed energy in the microcanonical ensemble or through the Boltzmann weight of a state
in the canonical and grand canonical ensembles. The concepts are the same quantum me-
chanically, but instead of considering a Hamiltonian H({pi, ri}), we need to consider the
Hamiltonian operator Ĥ, an operator involving derivatives and not a simple function of mo-
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mentum or position. Particles in quantum mechanics are represented by the wavefunction
ψ, a complex amplitude with |ψ(x, t)ψ∗(x, t)| equal to the probability density of finding the
particles within infinitesimal volume elements around positions x at time t. ψ(x, t) (where
x is a 3N dimensional vector, not a 3 dimensional vector of a single particle’s position!)
will satisfy

i~
∂ψi(x, t)

∂t
= Ĥψ(x, t) (6.1)

The wave functions thus tell us complete statistical information about how the system
will evolve in time, in the same way that knowing the positions and momenta of classical
particles would.

When we constructed the microcanonical ensemble classically, we treated all arrangements
of particles that yielded the fixed total energy E as equally likely to occur. The volume
in phase space was given by the number of ways to arrange the particle positions and
momenta such that

∑
iH({p, r}) = E. In the quantum world, we cannot simply count

the number of ways to arrange the particle positions and momenta, because the particles
don’t have well defined positions or momenta. The entire system is described instead by
the wavefunction ψ, which satisfies Schrödingers equation, and we must work instead with
energy eigenstates, satisfying Ĥψ = Eψ.

6.1.2 Pure states and mixed states

If the energy is not degenerate (e.g. is the ground state of the system), the microcanon-
ical ensemble is remarkably easy to work with in the quantum world: there’s only one
wavefunction that satisfies the constraint:

|ψ〉 = e−iEt/~|E〉 where Ĥ|E〉 = E|E〉 (6.2)

In principle, we’re done in this case: all statistics for our system at energy E is entirely
described by |E〉. This is an important difference between the classical and quantum
mechanical case: classically, counting the size of the ensemble of configurations whose
energies added up to E was very painful. Quantum mechanically, there’s only one solution,
and we’ve solved the problem in one line. It’s worth mentioning that there still remains the
problem of solving the Schrödinger equation for 1023 particles, which is where the painful
calculations would enter into the microcanonical ensemble. We’ll leave that aside for the
moment.

If there is no degeneracy in the energy levels (so |E〉 is the unique solution to Schrödinger’s
equation with eigenvalue E), we are guaranteed that the system is found in that state. If
we were to imagine having M copies of the same isolated microcanonical system at energy
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E, all of them would have to be found in the same non-degenerate state |E〉. For this
reason, such a state is termed a pure state.

For a degenerate energy, with {|Ed〉} the set of degenerate solutions to Ĥ|Ed〉 = E|Ed〉
and 〈Ed|Ed′〉 = δdd′ , the system can be found in some linear combination of any of those
states. If we were to have M copies of the same isolated microcanonical system, the kth

wavefunction for the system in the energy eigenbasis will be described by

|ψk〉 =
∑
d

akd(t)|Ed〉 (6.3)

with akd the amplitude of the state |Ed〉 and |〈Ed|ψk〉|2 = |akd|2 the quantum mechanical
probability of being found in the state |Ed〉. Note that |akd|2 is unrelated to the concept of
a thermal probability distribution (we’ll get to that soon though).

If we were to imagine sampling the wavefunction of these isolated systems an enormous
number of times (M →∞), we expect that the probabilities of seeing any of the degenerate
states must be equal in the microcanonical ensemble: M−1

∑
k |akd|2=const, independent of

the index d. This assumption of equiprobability (which we used in the classical microcanon-
ical ensemble) asserts that there is an equal probability of being found in any degenerate
eigenstate (that is, each |Ed〉 is just as likely to be observed as any other). This was sensi-
ble classically and remains sensible quantum mechanically: if there is only a constraint on
energy there is no reason to expect one eigenstate to occur more often than another. We
can then compute the probability of being found in a particular energy state in terms of
the ensemble average of |akd|2 using our equiprobability assumption. We can write

Prob(being in state |Ed〉) =

〈
|〈Ed|ψ〉q|2

〉
=

1

M

∑
k

|akd|2 =
1

Ω
(6.4)

where Ω is the number of accessible states that satisfy the energy constraints (the number of
|Ed〉). Eq. 6.4 is a mixture of a quantum mechanical inner product between the measured
state and one of the degenerate eigenstates of the energy (a quantum average, denoted
〈· · ·〉q), and an ensemble average over all of our M samples. The right hand side of eq. 6.4 is
a constraint coming from statistical mechanics: equiprobability of indistinguishable states.
All of this mirrors the calculation we made classically: a system state was the collection
{p, r}, and the probability of being found in any particular state was uniform. This will
provide a useful guide for how to compute thermal averages in the next section.
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6.2 The density operator

6.2.1 Density and probability

Statistical mechanics was successful in computing the average of a wide range of classical
observables by noting that

〈X〉classical =
∑
n

Xnpn (6.5)

where pn was the probability of being found in some state n and Xn the value of the
observable in that state. We can use this idea quantum mechanically to determine the
thermal average of an operator. This is simplest in the microcanonical ensemble, but we
will see the idea works in the canonical and grand canonical ensembles as well.

In the microcanonical ensemble, each of our samples can be written in terms of the degen-
erate eigenstates |Ed〉, with |ψk〉 =

∑
d a

k
d|Ed〉. In that case, we can write the quantum

mechanical average

〈Ô〉q〈= ψk|Ô|ψk〉 =
∑
dd′

〈ψ|Ed〉Odd′〈E′d|ψ〉 (6.6)

=
∑
dd′

(akd)
∗akd′Odd′ (6.7)

where Odd′ = 〈Ed|Ô|Ed′〉 is the matrix element of the operator over the basis {|Ed〉}.
Note that if the operator Ô commutes with the Hamiltonian, this matrix representation is
diagonal in the microcanonical ensemble, with Odd′ = Odδdd′ .

We can determine the statistical average〈
〈ψk|Ô|ψk〉

〉
=

1

M

∑
k

∑
dd′

(akd)
∗akd′Odd′ (6.8)

=
∑
dd′

Odd′ρd′d (6.9)

where we have defined the matrix elements for the density operator

ρd′d =
1

M

∑
k

(akd)
∗akd′ (6.10)

This produces a surprising feature of a statistical average of a quantum mechanical ob-
servable: the average is a product of a statistical property (the density matrix, which is
independent of the observable in question), and a quantum average (which is independent
of the statistics of the system).
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In the case of an operator that communtes with the Hamiltonian, we’ve already noted that
the matrix representation of Ô is diagonal. This has a useful interpretation, with

〈〈Ô〉q〉 =
∑
d

ρdOd (6.11)

where ρd = ρdd are the diagonal elements of the density operator. This is suggestive of
the role that the density operator plays, since it is very similar to the classical statistical
average of 〈X〉 =

∑
n pnXn. The classical function X has been replaced by a quantum

mechanical average of the operator, and the probability has been replaced by the diagonal
density elements ρd. We will see that this analogy holds true at equilibrium.

6.2.2 Density in an arbitrary basis

In the microcanonical ensemble, the degenerate basis {|Ed〉} was a natural choice for the
basis of |ψk〉, but any basis could be chosen. If we choose instead to write |ψk〉 =

∑
n a

k
n|φn〉

for some orthonormal basis |φn〉. We can compute the density operator in the same way
as in the previous section, with〈

〈ψk|Ô|ψk〉
〉

=
1

M

∑
k

〈ψk|Ô|ψk〉 =
1

M

∑
k

∑
nm

(akn)∗akm〈φn|Ô|φm〉 (6.12)

=
∑
nm

Onm
1

M

∑
k

(akn)∗akm (6.13)

≡
∑
nm

Onmρmn (6.14)

where we have defined the matrix elements

ρmn =
1

M

∑
k

(akn)∗akm (6.15)

In any basis, we expect that ρ∗nm = ρmn, implying that ρ̂† = ρ̂.

6.2.3 The quantum Liouville’s theorem

Let’s return to our sampling of the configuration of the system, generating M states {|ψk〉}
in any ensemble. First, we note that

i~
∂

∂t
|ψk〉 = Ĥ|ψk〉 =

∑
n

akn(t)Ĥ|n〉 =
∑
n

akn(t)
∑
m

|m〉〈m|Ĥ|n〉 =
∑
nm

akn(t)Hmn|m〉(6.16)
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where {|n〉} is the energy eigenbasis. This can be combined with the fact that |n〉 is
independent of time, so ∂|ψk〉/∂t =

∑
m ȧ

k
n(t)|n〉, to find

ȧkn(t) =
1

i~
∑
m

Hnma
k
m(t) (6.17)

Knowing ȧkn(t), we can work out the time evolution of the density. This is simplest in the
energy eigenbasis (with 〈n|Ĥ|m〉 = Enδnm = Hnm), but any basis will follow the same
result:

∂ρnm
∂t

=
1

M

∑
k

[
(ȧkn)∗akm + ȧkm(akn)∗

]
(6.18)

=
1

M

M∑
k=1

[( ∞∑
l=0

Hnla
k
l

i~

)∗
akm − (akn)∗

( ∞∑
l=0

Hmla
k
l

i~

)]
(6.19)

= − 1

i~
∑
l

(
Hnlρlm − ρnlHml

)
(6.20)

=
(−Ĥρ̂+ ρ̂Ĥ)nm

i~
(6.21)

This result is true for all elements n and m, meaning we finally find

∂ρ̂

∂t
+

[ρ̂, Ĥ]

i~
= 0 (6.22)

which is the quantum mechanical analogue of Liouville’s theorem. This can be compared
to the classical

∂ρ

∂t
+ [ρ,H] = 0 [ρ,H] =

∑
i

∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi
(6.23)

which says something related (but not identical) to the quantum version in eq. 6.22.
The conserved ‘volume in phase space’ is no longer meaningful, since there is an nonzero
probability of being found anywhere in phase space. The mental picture is still useful if you
think of the ‘volume in phase space’ being fuzzy, where regions of high density can ‘move’
and also become wider or sharper, but it’s important to recognize that the volume in phase
space is not strictly conserved, because particles don’t have precise locations or momenta.
However, a very useful aspect of the quantum Liouville equation is that at equilibrium
(where ∂ρ/∂t = 0) the density and Hamiltonian operators commute. This means that they
can both be simultaneously diagonalized at equilibrium (they share a basis set) and that ρ̂
can (at equilibrium) be represented as a function solely in terms of Ĥ (or other operators
that commute with Ĥ.
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6.3 The density operator and partition functions in the en-
sembles

6.3.1 Classical probabilities in the ensembles

At equilibrium, the density operator must commute with the Hamiltonian. That means
that we can write the statistical average for any statistical ensemble (MCE, CE, or GCE)
as 〈

〈ψk|Ô|ψk〉
〉

=
1

M

∑
k

〈ψk|Ô|ψk〉 =
1

M

∑
k

∑
nm

(akn)∗akm〈φn|Ô|m〉 (6.24)

=
∑
nm

Onmρnδnm (6.25)

=
∑
n

ρn〈n|Ô|n〉 (6.26)

As mentioned previously, this has the precise form of an average if we recognize ρn as the
probability of being found in the state |n〉.

This is consistent with what we saw in the microcanonical ensemble, where ρn = Ω−1 was
the probability of being found in a particular state. We can further derive the equilibrium
density operator by realizing we have already determined the probability of being found
in any state.Classically, we found that the probability of finding the system in a particular
state in the canonical and grand canonical ensemble.

Pcanon(ε) =
e−βε∑
ε e
−βε Pgrand(ε) =

zne−βε∑
n,ε z

ne−βε
(6.27)

with the denominators the partition and grand partition functions, respectively.

We can thus write the probability of finding a state with energy En at thermal equilibrium
in a bath of temperature T in the canonical ensemble:

ρnm =
e−βEn∑
n e
−βEn δnm (6.28)

so we can write

ρ̂ = Q−1
N

∑
n

e−βEn |n〉〈n| = e−βĤ

QN

∑
n

|n〉〈n| = e−βĤ

Tr(e−βĤ)
(6.29)

where

Tr(e−βĤ) =
∑
n

e−βHnn =
∑
n

〈n|e−βĤ |n〉 =
∑
n

e−βEn = QN (6.30)
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The grand canonical ensemble is derived in exactly the same way, with the addition of
a number operator n̂ counts the number of particles (of the form a†a) that commutes
with the Hamiltonian and counts the number of particles in the system. Repeating these
calculations for the grand canonical ensemble shows that

ρ̂GCE =
e−βĤ+βµn̂

Tr(e−βĤ+µβn̂)
(6.31)

which has all of the properties we’ve discussed before: diagonal in the energy basis and
fundamental for computing the mean values of various observables.

6.3.2 Properties of the trace

If the chosen basis is one that diagonalizes the density operator, ρnm = pnδnm is the
probability of being found in state n. However, if the density is not diagonal in the density,
no individual matrix element can be viewed as a probability. The interpretation of a
probability is dependent on the basis you choose. Despite this issue with the interpretation
of the matrix elements, averages computed with the density operator are independent of
the basis. We can see this by defining the trace of an operator as the sum of its diagonal
elements, Tr(A) =

∑
nAnn =

∑
n〈n|A|n〉. We see that the average of any operator is

〈〈Ô〉q〉 =
∑
mn

Onmρmn =
∑
nm

〈n|Ô|m〉〈m|ρ̂|n〉 (6.32)

=
∑
n

〈n|Ôρ̂|n〉 = Tr(Ôρ̂) (6.33)

Averaging is thus simply computing a trace over the operator multiplied by the density.
Again, this is consistent with eq. ??.

Since the interpretation of the density operator’s elements as a probability is dependent
on the basis we choose, it is natural to wonder if the average value of 〈〈O〉q〉 depends on
the chosen basis. We expect it should not (after all, the physical value of an observable is
not basis dependent), and can compute

Tr(A) = =
∑
n

〈n|A|n〉 =
∑
nmm′

〈n|φm〉〈φm|A|φm′〉〈φm′ |n〉 (6.34)

=
∑
mm′

〈φm|A|φm′〉
∑
n

〈n|φm〉〈φm′ |n〉 (6.35)

=
∑
mm′

〈φm|A|φm′〉〈φm′ |φm〉 (6.36)

=
∑
m

〈φm|A|φm〉 (6.37)
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were we made use of the fact that 1 =
∑

n |n〉〈n| for any complete orthonormal basis.
Thus, regardless of our basis-dependent interpretation of the matrix elements of ρ, we can
still compute the mean of any operator without concern about the basis. We also might
be concerned that ρ operates from the right, but we have not assumed that ρ commutes
with Ô. Physically, we again expect that the observed mean should be independent of the
mathematical details, and find Tr(ÂB̂) = Tr(B̂Â) for all operators:

Tr(AB) =
∑
n

〈n|AB|n〉 =
∑
nm

〈n|A|m〉〈m|B|n〉 (6.38)

Tr(BA) =
∑
m

〈m|BA|m〉 =
∑
nm

〈m|B|n〉〈n|A|m〉 (6.39)

which are the same.

6.4 A single particle in a box

If we imagine having a single particle in a box (not a collection of 1023 particles yet), we can
work out the statistics of the particle in the canonical ensemble. Its possible to compute
the mean energy as 〈〈Ĥ〉q〉, with

〈〈Ĥ〉q〉 =
Tr(Ĥe−βĤ)

Tr(e−βĤ)
=

∑
n〈n|Ĥe−βĤ |n〉∑
n〈n|e−βĤ |n〉

=
~2π2

2mL2

∑
n n2e−β~

2π2n2/2mL2∑
n e
−β~2π2n2/2mL2 (6.40)

Note that this precisely equivalent to computing 〈Ĥ〉 = −∂ log(QN )/∂β, as we found
classically. We can replace the sum by an integral (assuming ~2π2/2mL2 � 1) by writing
∆q = 1/L and q = n/L,

〈Ĥ〉 ≈ 3× ~
2π2

2m

∫
dqq2e−β~

2π2q2/2m∫
dxe−β~2π2q2/2m

=
3

2β
(6.41)

so the quantum statistics for a single free particle still satisfy the equipartition of energy.
It’s also possible to compute the entropy via S = −kBTr(ρ̂ log(ρ̂)), the free energy via
A = U − TS, and all of the other thermodynamic quantities we found classically.

Quantum mechanically, we can compute a few new things as well. Classically, we assumed
every particle was point-like, but claimed that the thermal wavelength λ somehow repre-
sented its ‘size’ in quantum mechanics. We can precisely determine the physical particle
density in space by recognizing that 〈r|ρ̂|r′〉 represents the average amplitude of the overlap
between two positions r and r′. If r = r′, this quantity is 〈r|ρ̂|r′〉 = p(r) is the probability
density as a function of position in space (the probability of being found at r). These
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quantities can be computed via

〈r|e−βĤ |r′〉 =
∑
nm

〈r|n〉〈n|e−βĤ |m〉〈m|r′〉 (6.42)

=

(
2

L

)3∑
n

e−βEn sin

(
nxπx

L

)
sin

(
nyπy

L

)
sin

(
nzπz

L

)
(6.43)

× sin

(
nxπx

′

L

)
sin

(
nyπy

′

L

)
sin

(
nzπz

′

L

)
which is a terribly unwieldy expression. While we can’t perform the sum exactly, in the
limit of L→∞ we can write the sums

∑∞
n=0 f(an/L) ≈ L

∫∞
0 duf(au). This gives

2

L

∑
n

e−βn
2π2~2/2mL2

sin

(
nπx

L

)
sin

(
nπx′

L

)
≈ 2

∫ ∞
0

dqe−βπ
2~2q2/2m sin(xπq) sin(x′πq)

=

(
m

2πβ~2

)1/2(
e−m(x−x′)2/2β~2 − e−m(x+x′)2/2β~2

)
≈ 1

λ
e−2mπ2(x−x′)2/βh2 (6.44)

≈ 1

λ
e−π(x−x′)2/λ2 (6.45)

with the approximation due to the fact that the second exponential term is always small far
from the walls, and we’ve used the definition λ2 = h2/2πmkBT for the thermal wavelength.
Then

〈r|e−βĤ |r′〉 ≈ 1

λ3
e−π|r−r

′|2/λ2 (6.46)

The partition function can be evaluated in a number of different ways, but we can do so
explicitly by using the position basis

Q1 = Tr(e−βĤ) =

∫
d3x〈x|e−βĤ |x〉 =

V

λ3
(6.47)

which is the partition function for the ideal gas we’ve already derived. Here the impor-

tant thing is that one can use 〈x|e−βĤ |x′〉 to determine the mean of any operator that
involves position (e.g. the mean of |x|−1), so that a variety non-trivial averages can be
computed.

We also find that

ρ(r, r′) = 〈r|ρ̂|r′〉 =
e−m(r−r′)2/2β~2

V
=
e−π(r−r′)2/λ2

V
(6.48)
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which measures the width of the distribution of the location of a particle centered at x
(or x′). It’s of course symmetric about the center, and if x = x′ we find the density is
uniform in the container, ρ(x,x) = V −1. The exponential term decays over a length scale
~2β/m = λ2/(2π), meaning that the thermal wavelength is indeed (on the same order of)
the effective size of a quantum particle at temperature T .

6.5 Indistingishable Quantum Particles

6.5.1 Wavefunction for multiple particles

The previous section applies to a single particles only, and we did not compute the wave-
function for a collection of particles. For a collection of particles, we expect to have the
Schrödinger equation

Ĥ = − ~
2

2m

N∑
i=1

∇2
i + V (r1, . . . , rN ) ĤΨ(r1, . . . , rN ) = EΨ(r1, . . . , rN ) (6.49)

which may be a highly non-trivial problem to solve if V is unfriendly. However, if the
particles are non-interacting, life becomes much simpler. In that case, we can write a
(possibly non-unique) solution:

Ĥ =
∑
i

(
− ~2

2m
∇2
i + V (ri)

)
(6.50)

ΨE(r1, . . . , rN ) =
∏
i

ψεi(ri) (6.51)

where the ψε(ri) is the wavefunction for a single particle under the single particle hamil-
tonian, (−~2∇2/2m + V )ψε = εψε. This immediately implies the product of ψε’s is an
eigenstate of the entire hamiltonian with energy E =

∑
i εi. If we suppose we order the

energies to be 0 < ε1 < ε2 < . . ., we can specify the state with n1 particles at energy level
ε1, n2 particles at energy level ε2, and so on, by writing

ΨE({ri}) =

n1∏
i=1

ψε1(ri)×
n1+n2∏
i=n1+1

ψε2(ri)× · · · (6.52)

with the constraints

N =
∑
i

ni E =
∑
i

niεi (6.53)

We are starting to recognize elements from the canonical ensemble here! Note that here
we’ve assumed there is no degeneracy in the energy levels; this argument is more tedious
if that’s not assumed, but it’s possible to construct a similar solution.
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6.5.2 Indistinguishability and permutations

Indistinguishability of the particles was a major theme when we talked about the canonical
ensemble, and it is worth thinking about distinguishability quantum mechanically. It turns
out, we’ll be able to explicitly compute the Gibbs correction of N ! for indistinguishable
particles. When we worked out the indistinguishability of particles in the classical case,
we made the following argument: if we were to pick up two different particles that had
two different energies, we would be able to tell them apart. We used the correction N ! in
the continuous case (the number of permutations of the indexes of the particles). In the
discrete case the appropriate classical correction factor is the number of ways to permute
{ni} particles among the energy levels, N !/

∏
i ni!, which we used when generating the

classical canonical ensemble.

Classical

particle 1

particle 2

particle 3

Particles are given an arbitrary index
N! removes overcounting

Quantum Mechanical

Peaks imply high probability of some particle in spaceParticles are delta functions in space

No particle is located in a particular peak.
No peak has an index, no doublecounting.

Figure 6.1: A hypothetical distribution of three particles in classical phase space and
the corresponding quantum mechanical analog. Classical particles have an index that are
arbitrary and lead to double-counting if they are indistinguishable. Quantum wavefunctions
have peaks associated with greater density of particles, but no single particle is found
anywhere, and no peak (the equivalent of a classical particle) is given an index.

This analysis is incorrect in the quantum case, where the permutation between two particles
must still represent exactly the same state. This is diagrammed in Fig. 6.1, which shows a
hypothetical wavefunction sampled in the ensemble. Quantum mechanical particles are not
δ function distributed, but instead are distributed according to the wavefunctions. This
means two things:

• Since high-density locations aren’t given an index, we are not going to be overcounting
in quantum statistical mechanics. We don’t need to include an ad hoc normalization
of 1/N !.
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• The wavefunction must explicitly account for the fact that all identical particles
contribute to the total wavefunction identically, so permutation of particle index
cannot change the wavefunction.

Similarly, we can consider a hypothetical case of two noninteracting particles with the total
system having energy E = ε1+ε2. While the wavefunction is composed of two particles with
two energy levels ε1 and ε2, neither particle has that energy. The state of each particle is
entangled, with both particles contributing to the higher energy level and both contributing
to the lower energy level. The permutation of particle indices is thus already built into the
wavefunction, and instead of including a correction factor to account for the fact that the
index is arbitrary, we simply need to accurately determine the wavefunction. Specifically,
if we have two eigenfunctions of the Hamiltonian,

Ĥψε1(r1)ψε2(r2) = Eψε1(r1)ψε2(r2) (6.54)

Ĥψε1(r2)ψε2(r1) = Eψε1(r2)ψε2(r1) (6.55)

then the wavefunction for the entire system must incorporate contributions from both
solutions to the Schrödinger equation:

Ψtot
E = αψε1(r1)ψε2(r2) + βψε1(r2)ψε2(r1) (6.56)

with the constraint α2 + β2 = 1 (and another constraint coming up soon).

6.5.3 Permutation operators

Regardless of the energy levels, it must be the case that the permutation of the particles
has no impact on the state of the entire system. The true wave function of each particle
must explicitly incorporate not only the products of single particle wavefunctions, but
also all possible permutations. That is, if we define an arbitrary permutation operator
P exchanging the position of some particles, the probability density |PΨtot|2 = |Ψtot|2
must be unchanged. This means in general that PΨtot = eiθΨtot, so the permutation of a
pair of particles introduces a phase shift in the wave function. Of course, if we undo our
permutation by applying the permutation operator twice (since all we’ve done is swapped
the particle indices twice, meaning we recover the same indices as we had originally).
Under an even number of permutations, we thus must recover the original wavefunction,
so PPΨtot = e2iθΨtot = Ψtot. This means that not any phase shift is possible, but rather
the permutation must be either symmetric or asymmetric: PΨtot = ±Ψtot.

In our two particle case, there are two solutions that satisfies this additional constraint:

Ψtot
E =

1√
2

(
ψε1(r1)ψε2(r2)± ψε1(r2)ψε2(r1)

)
(6.57)
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It’s straightforward to show that |Ψtot
E (r1, r2)|2 = |Ψtot

E (r2, r1)|2 for this function, which
satisfies the permutability constraint.

For an arbitrary number of particles, the wavefunction could be symmetric in all its ar-
guments, so that PΨtot = Ψtot for all single particle permutations. If the wavefunction
is symmetric for one pair permutation, it’s easily seen to be symmetric for any number
of permutations, since any permutation can be built of individual pair swaps. Thus, a
symmetric eigenstate can be constructed knowing the individual particle wavefunctions
via

Ψsymm =
1√
N !

∑
P

PΨE({ri}) (6.58)

where ΨE({ri}) is any product of single particle wavefunctions consistent with the sin-
gle particle Hamiltonian, and

∑
P represents a sum over all possible permutations. The

factor of (N !)−1/2 is required due to the ultimate normalization condition of the total
wavefunction, since there are N ! possible distinct permutation operators.

We’ve seen that an antisymmetric solution also exists for the two-particle system, and
we would expect an antisymmetric state PΨ = −Ψ to be a possible solution to the full
Schrödinger equation as well. However, it’s not possible for all permutations to produce a
overall change in sign of the wavefunction. For example, if we apply the same two particle
permutation matrix twice, PpairPpairΨE = ΨE for any Ψ, since re-applying the permu-
tation undoes the exchange. Making two pair permutations is an even operation, while
making one pair permutation is an odd operation. Generally speaking, Ψ can be an anti-
symmetric function, which is defined as changing sign if not for any arbitrary permutation,
but rather only for those of odd order. This means that

Ψasymm =
1√
N !

∑
P

(−1)o(P)PΨE({ri}) (6.59)

with o(P) the order of the permutation: odd if an odd number of pairs of particles are
exchanged and even if an even number of pairs of particles are exchange. Note that
any permutation of n particles can be decomposed into individual pairs of particles being
permuted, so this is equivalent to the number of single-pair exchanges that compose the
total permutation.

6.5.4 Pauli Exclusion principle

The asymmetric state Ψasymm has an interesting feature if the two particles are located at
the same position:

P1↔2Ψasymm(r1, r2, {rk}) = −Ψasymm(r2, r1, {rk}) antisymmetric wavefunction

P1↔2Ψasymm(r1, r2, {rk}) = Ψasymm(r2, r1, {rk}) if r1 = r2 (6.60)



CHAPTER 6. THE FOUNDATIONS OF QUANTUM STATISTICS (PATHRIA CH 5-6)125

It must therefore be that Ψasymm = 0 if any pair of particles occupies the same location
r. Such a configuration is absolutely forbidding and has zero probability of occurring.
That is, identical particles are forbidden from occupying an identical quantum states.
We can equally well see this by noting that the determinant of a matrix has the same
structure as the asymmetric functions: exchanging a row flips the sign of the determinant
but keeps the magnitude constant. This naturally leads to the construction of the Slater
determinant:

|Ψ〉 =
1

N !

∣∣∣∣∣∣∣∣∣
|α〉1 |β〉1 · · · |γ〉1
|α〉2 |β〉2 · · · |γ〉2

...
...

. . .
...

|α〉N |β〉N · · · |γ〉N

∣∣∣∣∣∣∣∣∣ (6.61)

where |α〉1 denotes the first particle being in state α. Note that if two states were identical
(α = β) there would be two columns of the matrix that were the same. This would mean
the determinant would be zero, so such a state is disallowed.

This is derived solely through the statistics of the system, without any reference to spin or
relativity, but draws a natural connection to the Pauli Exclusion principle. Pauli won the
1945 Nobel Prize by demonstrating in 1925 that the orbital structure of the periodic table
could be fully explained if bound electrons are forbidden to occupy identical quantum states
(having the same n, l, m, and s). We now know that the exclusion principle only applies to
particles with half integer spin, provable only using the Dirac equation that incorporates
special relativity into quantum mechanics. Integer spin particles are not constrained by
the Pauli exclusion principle, and will therefore have very different statistics. The Pauli
exclusion principle is satisfied for antisymmetric states, even though we haven’t proved
these states are required for spin-1/2 particles. We thus make the connection between
fermions and the asymmetric states as well as bosons and the symmetric states in quantum
statistical mechanics without proof they have anything to do with particle spin at all.

6.6 The Quantum Ideal Gas

6.6.1 Ideal gas of two quantum particles

Surprising quantum effects can come up due to the constraints of symmetrization of the
wavefunction. An ideal gas of noninteracting particles, for which Ĥ =

∑
i ~2∇2/2m, can

be found in either the symmetric or antisymmetric state (due to them being bosons or
fermions), and we’d like to compute the partition function for this system. To do so,

we need to determine QN = Tr(e−βH) =
∫ ∏

i d
3ri〈{ri}|e−βĤ |{ri}〉. The symmetrization

arises due to the permutation of particles, so we expect that new quantum effects may
arise for two or more particles and for simplicity we’ll start with two.
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The partition function for two particles can be written

Q2 =

∫
d3r1d

3r2Q2(r1, r2) Q2(r1, r2) = 〈r1r2|e−βH |r1r2〉 (6.62)

where Q2(r1, r2) is a constrained partition function: the partition function that arises if
we fix the positions r1 and r2. Classically, this corresponds to pinning the two particles at
these positions, while quantum mechanically we are determining the wavefunction at two
specific points. Using the energy eigenbasis, we can write

Q2(r1, r2) =
∑
E

e−βE |〈r1r2|E〉|2 (6.63)

where E = ~2π2/2mL2(k2
1 + k2

2) is the energy of the system. Note that we do not begin
by summing over the individual particle energies, since the eigenvalues of |E〉 are the total
system energy. We can replace the sum over total energies with a sum over particle energies
by writing E = ε1 + ε2, but we must recognize that (as we saw classically) the particle
indices are irrelevant. We need to include a factor of 1/N ! = 1/2 to account for the
indistinguishability of particle index. That means

Q2(r1, r2) =
1

2

∑
ε1,ε2

e−β(ε1+ε2)〈r1r2|ε1ε2〉 (6.64)

=
1

4

∑
ε1ε2

e−β(ε1+ε2)|ψε1(r1)ψε2(r2)± ψε1(r2)ψε2(r1)|2 (6.65)

=
1

4

∑
ε1

e−βε1 |ψε1(r1)|2
∑
ε2

e−βε2 |ψε2(r2)|2 (6.66)

±1

4

∑
ε1

e−βε1ψ∗ε1(r1)ψε1(r2)
∑
ε1

e−βε2ψ∗ε2(r2)ψε2(r1) (6.67)

±1

4

∑
ε1

e−βε1ψε1(r1)ψ∗ε1(r2)
∑
ε1

e−βε2ψε2(r2)ψ∗ε2(r1) (6.68)

+
1

4

∑
ε1

e−βε1 |ψε1(r2)|2
∑
ε2

e−βε2 |ψε2(r1)|2 (6.69)

= f(r1, r1)f(r2, r2)± |f(r1, r2)|2 (6.70)

where f(r, r′) =
∑

ε e
−βεψ∗ε (r)ψε(r

′). We evaluated this before for a particle in a box in
eq. 6.45, where we found

f(r1, r2) ≈ 1

λ3
e−π|r1−r2|

2/λ2 (6.71)

from which we find

Q2(r1, r2) =
1

2λ6

(
1± e−2π(r1−r2)2/λ2

)
(6.72)
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The constrained partition function is readily integrated to determine

Q2 =
V 2

2!λ6
± V

25/2λ
(6.73)

Recall that the classical ideal gas satisfied QN = V N/N !λ3N , consistent with the lead-
ing order term in this two-particle partition function. This implies there are quantum
corrections to the ideal gas partition function that are lower order in V/λ3. If V � λ3,
we find the classical limit (either dilute gasses or high temperatures), but deviations can
occur if V ∼ λ3. We made the argument that quantum effects would become relevant for
sufficiently large λ, but were not able to determine these corrections before.

We can also compute the density

ρ(r1, r2) = 〈r1r2|ρ̂|r1r2〉 = Q−1
2 〈r1r2|ρ̂|r1r2〉 ≈

1

V 2

(
1± e−2π(r1−r2)2/λ2

)
(6.74)

In the limit of λ → 0, this recovers a uniform particle density, ρ(r1, r2) = V −2. However,
a surprising feature of this pair density is that it implies Bosons are found closer together
than would be expected classically (since there’s a positive contribution to the density when
r1 ≈ r2) and Fermions are found further apart than would be expected classically (due to
the negative contribution). Note that these are still ideal particles, so there is no direct
interaction between them. The differences in the probability destinies are due entirely to
the quantum statistics, and could never be recovered classically.

6.6.2 Ideal gas of N particles

The results of the previous subsection hold for N particles as well, although it’s more
tedious to show. Pathria puts a good deal of work into proving it, but the main result is
that we can write

〈{ri}|e−βĤ |{ri}〉 =
1

N !λ3N

(
1±

∑
i<j

f(ri, rj)f(rj , ri) +
∑
i<j<k

f(ri, rj)f(rj , rk)f(rk, ri)± · · ·
)

=
1

N !λ3N

(
1±

∑
i<j

e−2π(ri−rj)2/λ2 +
∑
i<j<k

e−π[(ri−rj)2+(rj−rk)2+(rk−ri)2]/λ2 + · · ·
)

which is an expansion in increasing orders of particle permutations. That expansion doesn’t
necessarily seem useful from the definition of Ψ = N !−1/2

∑
P (−1)o(P )

∏
i ψi, since the

order of the contribution to the wavefunction doesn’t appear to depend on the order of
the permutation. However, having computed that f(r, r′) = λ−3e−π(r−r′)2/λ2 , we can now
see that each permutation gives an exponentially small contribution to the sum so long as
any particle is separated by a different particle by |ri − rj | ≈ λ. Thus, if k particles are
found close to one another, the kth order permutations may contribute to the k-particle
distribution.
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6.7 Spin systems and composite particles

In Sec. 6.6.1 we determined the quantum statistics of two noninteracting particles and
found quantum mechanical effects can lead to surprising behavior of the pair of particles.
This analysis did not include the effects of spin, which must be accounted for in general.
The spin states can be written as a linear combination of the four possible arrangements
| ↑↑〉, | ↑↓〉, | ↓↑〉, and | ↓↓〉. For two fermions, we know the total wavefunction must be
asymmetric under particle exchange, with

P1↔2Ψ(r1, r2) = −Ψ(r1, r2) (6.75)

Under this permutation, any spin associated with the particles would also be swapped,
which must be taken into account. Importantly, there are two distinct ways to enforce
asymmetry in the total wavefunction: an asymmetric position wavefunction and symmetric
spin state or a symmetric position wavefunction and asymmetric spin state. Defining the
symmetric and asymmetric position wavefunctions as

ψs(r1, r2) =
1√
2

(
ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)

)
(6.76)

ψa(r1, r2) =
1√
2

(
ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2)

)
(6.77)

we can write

Ψ11(r1, r2) = ψa(r1, r2) | ↑↑〉 (6.78)

Ψ10(r1, r2) = ψa(r1, r2)× 1√
2

(
| ↑↓〉+ | ↓↑〉

)
(6.79)

Ψ1−1(r1, r2) = ψa(r1, r2) | ↓↓〉 (6.80)

Ψ00(r1, r2) = ψs(r1, r2)× 1√
2

(
| ↑↓〉 − | ↓↑〉

)
(6.81)

where Ψ00 is the only term with a symmetric position wavefunction, and is referred to
as a singlet state. The wavefunctions Ψ1M all involve asymmetric position wavefunctions
but symmetric spin states, and are referred to as the triplet states. You might recognize
that the coefficients of 1 and ±1/

√
2 in eq. 6.78-6.81 are the famous Clebsch-Gordon

coefficients (which dictate how to add angular momenta quantum mechanically) for two
spin-1/2 particles. The total spin of the system adds up to 1 (so S = 0 or 1, and M =
−1, 0, 1, as indicated by the subscript on ΨS,M . The state (| ↑↓〉−| ↓↑〉)/

√
2 is referred to as

a singlet state (S = 0, only one possible M), while the states {| ↑↑〉, (| ↑↓〉+| ↓↑〉)/
√

2, | ↓↓〉}
are collectively referred to as a triplet state (S = 1, three possible values of M).

A surprising feature of a system of 2 fermions is that they collectively behave as a single
boson! A pair of bound fermions will have an integral value for the total spin when treated
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as a composite system, which means the composite particle will be a boson. This surprising
behavior is true for any even number of fermions bound together, and will exhibit similarly
bosonic behavior (but with a more complex expression for the total wavefunction). This
is particularly important for atoms, with protons, neutrons, and electrons all fermions.
For a neutral atom, the number of protons and electrons are equal (thus np + ne is an
even number), and therefore the total spin of the system is an integer if there are an even
number of neutrons and a half integer if there are an odd number of neutrons. Thus, 3He
will behave as a fermion (having 1 neutron, and total spin S = 5/2) while 4He will behave
as a boson (having 2 neutrons and total spin 3). This has been confirmed experimentally
for these two isotopes of Helium: 4He exhibits superfluidity (a feature of Bose Einstein
condensation we will not discuss extensively) but 3He does not, due to the fact that 4He
atoms do not obey the Pauli exclusion principle but 3He atoms do.

6.8 Summary

In this Chapter we’ve derived a quantum mechanical method for determining the statis-
tics of truly quantum mechanical particles. Averages of operators in quantum statistical
mechanics are determined via a density operator: a purely statistical object that describes
the probability of being found in any particular state in an ensemble of accessible states.
We found indistinguishability of particles was fully accounted for quantum mechanically
because of the permutability of the wavefunctions, which led to a natural requirement of
purely symmetric and purely antisymmetric states. We refer to these as Fermions and
Bosons, despite the fact that we are not able to identify these states as related integer vs
half-integer spin states (as is done in field theory). We found that quantum statistics differs
from classical predictions at low temperatures (as we already knew before), and were able
to derive higher order terms in the partition function (which we had not been able to do
before). Despite these successes, dealing with the wavefunctions directly is often tedious
and difficult to do exactly for N particles.



Chapter 7

Statistics of Fermions and Bosons
(Pathria Ch 6-8)

We’ve constructed the methods for computing the phase space density of quantum par-
ticles in the microcanonical, canonical, and grand canonical ensembles. The density was

normalized in terms of Tr(e−βĤ) or Tr(e−βĤ+βµn̂), which we need to compute for the
quantum ensembles. Computing the trace requires accounting for the differing statistics
of symmetric vs asymmetric quantum states, which can be analytically somewhat painful.
Also, while we did derive the density operator in the grand canonical ensemble, accounting
for particle permutations with a varying number of particles will increase the complexity of
any calculation. Finally, we also did not deal with degenerate energy levels in the previous
chapter, which are certainly important for Bosons and Fermions (since we know that the
distinction between these types of particles is spin!). In this chapter, we will use entropy
maximization to determine the partition function for Bosons and Fermions without hav-
ing to resort to direct manipulation of the particle wavefunction. From this, we will find
remarkable behavior for Bosons and Fermions that would not be predicted classically.

7.1 The Grand Partition Functions

The calculation of the canonical partition function was difficult to compute directly in the
case of Bosons and Fermions because of the constraints on the occupancy of each energy
level. In position space, that led to complicated expressions involving permutations, but
even in the energy eigenbasis computing the partition function can be difficult. Unlike
the classical case, where QN = QN1 /N !, there are detailed conditions on the number of
accessible states in each energy level that must be satisfied quantum mechanically. We

130
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have

QN =
∑
{nε}

δ

(
N −

∑
ε

nε

)
× g(nε)e

−β
∑
ε εnε (7.1)

where g({nε}) is the degeneracy in the energy levels accounting for the particle statistics.
Pauli exclusion implies

g(nε) = 1 Bosons (7.2)

g(nε) =

{
1 nε ≤ 1
0 nε > 1

Fermions (7.3)

For classical particles we have the total number of ways to arrange the particles was W =
N !/

∏
i ni!, and after normalization of 1/N ! due to the arbitrariness of the particle indices,

the statistical weight for classical particles is

g(nε) =
1

nε!
Classical Particles (7.4)

that was derived for the canonical partition function in Chapter 4 of these notes. The sum
over {nε} is a sum over all possible arrangements of particles into the various energy levels,
and can be written ∑

{nε}

=
∞∑

nε0=0

∞∑
nε1=0

∞∑
nε2=0

· · · (7.5)

It is not straightforward to perform the required sums because the number of particles in
each state must match a global condition (which is imposed by the delta function con-
straint). Classically, we got around this problem by imposing a Lagrange multiplier and
maximizing the entropy, eventually leading to the most probable occupancy n∗ε ∝ e−βε.
This approach worked fine classically, but will fail for bosons and fermions, since g(nε)
cannot be easily maximized for nε →∞: g(n) = 1 for bosons (so there is no change in the
limit of n � 1) and g(n) = 1 for n < 1 for fermions (so the limit n � 1 is meaningless).
Computing partition functions is difficult in the canonical ensemble, but surprisingly easy
in the grand canonical ensemble. This is because we can write

Q =
∑
N

zNQN =
∑
N

zN
∑
{nε}

g(nε)δ(N −
∑
ε

nε)e
−β

∑
ε εnε (7.6)

=
∑
{nε}

g(nε)z
∑
ε nεe−β

∑
ε εnε (7.7)

=
∑
nε0

g(nε0)

(
ze−βε0

)nε0
×
∑
nε1

g(nε1)

(
ze−βε1

)nε1
× · · · (7.8)
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Note that this lacks a constraint on the total number N , and that the occupancy numbers
are all now summed over independently. That means we can actually evaluate these sums,
and actually determine the grand partition function explicitly. We have for Bosons, called
Bose-Einstein statistics, that

QBE =
∞∑

nε0=0

(
ze−βε0

)nε0
×

∞∑
nε1=0

(
ze−βε1

)nε1
× · · · (7.9)

=
∏
ε

1

1− ze−βε
(7.10)

For Fermions, called Fermi-Dirac statistics, we have the even simpler expression

QFD =

(
1 + ze−βε0

)nε0
×
(

1 + ze−βε1
)nε1

× · · · (7.11)

=
∏
ε

(
1 + ze−βε

)
(7.12)

Finally, the classical grand partition function, called Maxwell-Boltzmann statistics, can be
written

QMB =
∑
nε0

1

nε0 !

(
ze−βε0

)nε0
×
∑
nε1

1

nε1 !

(
ze−βε1

)nε1
× · · ·

=
∏
ε

exp(ze−βε) = exp

(
z
∑
ε

e−βε
)

= ezQ1 (7.13)

Note that in the continuous case, without the discrete energy levels assumed here, we found
the classical partition function was Q = ezQ1 = ezV/λ

3
, which we had derived previously

using the entropy maximization techniques.

7.2 Statistics for the quantum ideal gasses

7.2.1 Thermodynamic Averages

The pressure in an ideal gas in the grand canonical ensemble is still

βPV = log(Q) (7.14)

For the three sets of statistics, the pressure can be written in the very general form

βPV =
1

a

∑
ε

log

(
1 + aze−βε

)
a =


1 Fermi Dirac
−1 Bose Einstein
0 Maxwell Boltzmann

(7.15)
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with the identification that 1/a log(1 + aze−βε) → ze−βε + O(a) as a → 0. We can also
compute a number of typical quantities in statistical mechanics. The mean number and
energy of the system is straightforward to determine, with

N = z
∂ log(Q)

∂z
=

1

a

∑
ε

aze−βε

1 + aze−βε
=
∑
ε

1

z−1e+βε + a
(7.16)

U = −∂ log(Q)

∂β

∣∣∣∣
z

=
∑
ε

ε

z−1e+βε + a
(7.17)

7.2.2 Mean occupancy and quantum statistics

These are global statistics, but it is also straightforward to determine the mean number of
particles at any energy level ε by computing

〈nε∗〉 = − 1

β

∂ log(Q)

∂ε∗
=

1

Q
∑
{nε}

g(nε)z
∑
ε nεe−β

∑
ε εnε × nε∗ (7.18)

=
1

z−1eβε + a
=

1

eβ(ε−µ) + a
(7.19)

This is very convenient, because we can compute the average of any quantity given this
factor by simply summing over the average number of particles at each energy level:

〈f(ε)〉 =
1

N

∑
ε

f(ε)〈nε〉 (7.20)

where for example the mean energy of each particle is

〈ε〉 =
1

N

∑
ε

ε〈nε〉 U = N〈ε〉 =
∑
ε

ε

z−1e−β(ε−µ) + a
(7.21)

in agreement with eq. 7.17

Eq. 7.19 has a number of important properties:

1. For Fermions,

• a = +1

• 0 < 〈nε〉 < 1, due to the fact that the maximum occupancy of any energy level
is 1.

• In the limit of T → 0 (β → ∞) the occupancy becomes a step function: any
states with ε < µ are occupied, since 〈nε〉 = (e−β|ε−µ|+ 1)−1 → 1. Likewise, any
states with ε > µ are unoccupied (〈nε〉 = 0. This fact will lead to the definition
of the Fermi Energy later in the chapter.
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Figure 7.1: Sketches of the features of (z−1eβε + 1)−1 (left, Fermions) and (z−1eβε − 1)−1

(right, bosons) for varying energy ε at different values of β. For Fermions, ε = µ is the
midpoint of the occupancy (〈nε〉 = 1/2, with a sharper division between occupied and
unoccupied states for increasing β. In the limit as β → ∞, 〈nε〉 will be a step function:
〈nε〉 = Θ(µ − ε). For Bosons, 〈nε〉 → ∞ at ε = µ, and all energy levels are required to
satisfy ε > µ. For increasing β, more and more particles are found in the lower energy
states.

• If β(ε−µ)� 1, 〈nε〉 ≈ e−β(ε−µ), proportional to the classical Maxwell-Boltzmann
occupancy.

2. For Bosons,

• a = −1

• 0 < 〈nε〉 <∞, since multiple particles can be found at the same energy level.

• When we computed grand partition function, we performed a sum over all
(ze−βε), which means it must be the case that µ < ε0 (the ground state) for
the sum to have converged. If µ = ε0, an infinite number of particles are found
in the ground state. For low temperatures, higher energy levels will be unoc-
cupied (〈nε〉 → 0). This fact will lead to the phenomenon of Bose-Einstein
condensation below.

• Maxwell-Boltzmann statistics are found as well when β(ε− µ)� 1.

Of course, we can still compute our fluctuations as we did classically: by taking a second
derivative. It is tedious but straightforward to show that

〈n2
ε 〉 − 〈nε〉2 = − 1

β

∂〈nε〉
∂ε

=
1

β2

log(Q)

∂ε2
=

z−1e−βε

(z−1e−βε + a)2
(7.22)
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which can be simplified to

〈n2
ε 〉 − 〈nε〉2

〈nε〉2
=

1

〈nε〉
− a (7.23)

which has a variety of properties that are to be expected: the Maxwell-Boltzmann statistics
(with a = 0) satisfy the typical 1/N relative fluctuation rule at every energy level. However,
the FD statistics (with a = +1) tend to have weaker fluctuations than classically while the
BE statistics tend to have greater fluctuations.

7.3 The Density of states

7.3.1 Momentum representation

The spacing between momentum levels or energy levels in quantum statistical mechanics
is expected to be small (depending on ~ to some power). For the ideal gas for which we’ve
derived the partition function, we know the energy is ε(p) = p2/2m with p = 2π~n/L =
hn/V 1/3. The small spacing in momentum (due to the smallness of h and the largeness of
V ) means we can rewrite the pressure in terms of an integral rather than a sum, with

βPV =
1

a

∑
n

log(1 + azeβε(n))× g(ε(n)) (7.24)

=
∑

n1,n2,n3

∆n3f(n1, n2, n3) (7.25)

with f(n1, n2, n3) = V log(1+aze−βε(n1,n2,n3))g(ε)/ah3, g(ε) the degeneracy of energy level
ε, and ∆n = h/L is the spacing between points. This is sensible because L can be made
arbitrarily large (in the thermodynamic limit). It is tempting to immediately write this sum
as an integral, but there is a subtlety that must be addressed to properly perform the limit.
The sum only converges to a Riemann-Stijiltes integral so long as f(n) is bounded for all
n. For fermions, all terms in the sum are bounded, since log(1 + ze−βε) ≤ log(1 + ze−βε0),
which is always finite for ε0 > −∞. So (setting g = 1)

(βPV )FD =
gV

ah3

∫
d3p log(1 + aze−βp

2/2m)) (7.26)

=
4πgV

ah3

∫ ∞
0

dp p2 log(1 + aze−βp
2/2m) (7.27)

(N)FD =
gV

ah3

∫
d3p

1

z−1eβp2/2m + 1
(7.28)

=
4πgV

ah3

∫ ∞
0

dp
p2

z−1eβp2/2m + 1
(7.29)
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(E)FD ≈ 4πgV

ah3

∫ ∞
0

dp
p2ε(p)

z−1eβp2/2m + 1
(7.30)

and similarly for any of the other thermodynamic averages we’ve computed. Note that we
have here computed the thermodynamic variables with the assumption that g(ε) = g is
constant for all energy levels (e.g., g=2 for spin 1/2 particles).

We encounter a problem with the sum-to-integral limit for Bosons, where every term in the
pressure sum satisfies log(1− ze−βε) ≤ log(1− ze−βε0). Unlike the case of fermions, one of
the terms of the sum can diverge: the ground state term. If z → eβε0 , the leading term of
the sum becomes arbitrarily large and will not converge in the continuum limit. We must
therefore treat that portion of the sum separately, writing (with g = 1 for simplicity)

(βPV )BE = log(1− ze−βε0) +
V

ah3

∫
d3p log(1 + aze−βp

2/2m)) (7.31)

≈ log(1− z) +
4πV

ah3

∫ ∞
0

dp p2 log(1 + aze−βp
2/2m) (7.32)

(N)BE =
1

z−1eβε0 − 1
+

V

ah3

∫
d3p

1

z−1eβp2/2m − 1
(7.33)

≈ z

1− z
+

4πV

ah3

∫ ∞
0

dp
p2

z−1eβp2/2m − 1
(7.34)

(E)BE ≈ zε0
1− z

+
4πV

ah3

∫ ∞
0

dp
p2ε(p)

z−1eβp2/2m − 1
(7.35)

where we have assumed that βε0 � 1 in the latter approximations. Each of the leading
order terms are due to the ground state occupancy, which can be large for Bosons. The
ground state occupancy is negligible for Fermions, since only 1 one particle can be found
in the ground state (or g particles if there is a ground state degeneracy of g). It’s there-
fore useful to think of these thermodynamic variables in terms of the ground and excited
contributions: PBE = P0 + Pe, NBE = N0 + Ne, and EBE = E0 + Ee. For Fermions, we
will have PFD = Pe since the ground state contribution is negligible (and similarly for the
number and energy).

7.3.2 Energy representation and the density of states

Sometimes, we’ll want to compute averages in terms of energy rather than momentum.
This is straightforward to do because we know that for an ideal gas that ε = p2/2m, so we
can make a change of variables and write this as

βPeV =
4πV

ah3

∫ ∞
0

d(
√

2mε)2mε log(1 + aze−βε) (7.36)

=
2πV

a

(
2m

h2

)3/2 ∫ ∞
0

dε
√
ε log(1 + aze−βε) (7.37)
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In general, any of our sums over energy states can be immediately replaced by integrals
over the energy by replacing

∑
ε · · · =

∫∞
0 dεD(ε) · · ·, where the density of states is

D(ε) = 2πV

(
2m

h2

)3/2√
ε (7.38)

The density of states indicates the number of states between energy ε and ε+dε. Note that
Pathria uses the label a(ε), which can cause confusion with the already-defined a indicator
of BE vs FD statistics. For Bose Einstein statistics, we’ll also need to account for the
ground state energy term explicitly.

We’ll see later in the chapter that many useful quantities can be computed using the
continuous form of 〈nε〉 coupled with the density of states, but it’s very useful to derive
a relationship between pressure and energy that is independent of the statistical model.
Noting that ∂ log(1 + aze−βε)/∂ε = −β〈nε〉, we can integrate by parts to find

βPeV = 2πV

(
2m

h2

)3/2 ∫ ∞
0

dε
√
ε log(1 + aze−βε) (7.39)

=
2

3
× 2πV

(
2m

h2

)3/2[
ε3/2 log(1 + aze−βε)

∣∣∣∣ε=∞
ε=0

+ β

∫ ∞
0

dεε3/2〈nε〉 (7.40)

=
2

3
β

∫ ∞
0

dεD(ε)ε〈nε〉 =
2

3
βEe (7.41)

Note this is true for Fermi-dirac, Bose Einstein, and Maxwell-Boltzmann statistics. The
pressure of an ideal gas due to excited particles always satisfies PV = 2E/3.

7.3.3 The density of states in other systems

The density of states D(ε) allows us to convert a sum to an integral, but depends on two
features:

1. The dimensionality of the system. When performing the switch between the sum and
the momentum integral, we introduced a factor (V 1/d/h)d with d = 3, and the factor
of p2 in the final integral is due to the three-dimensional spherical coordinates used.
For d = 2, we define A = L2 the area of the system and find

βPA =
1

a

∑
n

log(1 + aze−βε(n)) (7.42)

→ A

ah2

∫
d2p log(1 + aze−βp

2/2m) (7.43)

=
2πA

ah2

∫ ∞
0

dp p log(1 + aze−βp
2/2m) (7.44)
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=
2πAm

ah2

∫ ∞
0

dε log(1 + aze−βε) (7.45)

so that

D2d =
2πAm

h2
× ε0 (7.46)

which is independent of the energy in 2 dimensions!

2. The energy dispersion relation. The density of states depends on the functional form
of ε(p) in order to replace a dp with a dε. If we imagine an extreme relativistic gas,
with ε(p) =

√
p2c2 +m2c4 ≈ pc (instead of the classical ε = p2/2m), we would find

βPV =
1

a

∑
n

log(1 + azeβε(n)) (7.47)

=
4πV

ah3

∫ ∞
0

dp p2 log(1 + aze−βpc) (7.48)

=
4πV

ah3c3

∫ ∞
0

dε ε2 log(1 + aze−βε) (7.49)

so that

Drelativistic =
4πV

(hc)3
× ε2 (7.50)

Other dispersion relations are possible (e.g. on a lattice the energy dispersion relation
is expected to be periodic in the momentum vector n.).

7.4 The Fermi-Dirac and Bose-Einstein functions

The number of particles in the excited state depends on z and β, but can be simplified by
making the change of variables ε = xkBT :

Ne =

∫ ∞
0

dε
D(ε)

z−1eβε + a
=

∫ ∞
0

dx
D(xkBT )

z−1ex + a
(7.51)

=
2√
π

V

λ3

∫ ∞
0

dx
x1/2

z−1ex + a
(7.52)

This means we can generally write the number of particles in the excited state in terms of
the special functions

fν(z) =
1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1ex + 1
gν(z) =

1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1ex − 1
(7.53)
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where fν(z) is the Fermi Dirac function and gν(z) is the Bose Einstein function. The
leading factor of 1/Γ(ν) handles the factor of 2/

√
π in eq. 7.52. Note that these functions

are monotonically increasing in z, since a larger value of z reduces the exponential decay
growth of the denominator. A taylor expansion in z � 1 gives

fν(z) =
1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1ex + a
=

1

Γ(ν)

∞∑
n=1

an−1zn
∫ ∞

0
dx xν−1e−nx (7.54)

=
1

Γ(ν)

∞∑
n=1

an−1 z
n

nν

∫ ∞
0

dyyν−1e−y (7.55)

=

∞∑
n=1

an−1 z
n

nν
(7.56)

so that

fν(z) ∼ z − z2

2ν
+
z3

3ν
− · · · gν(z) ∼ z +

z2

2ν
+
z3

3ν
+ · · · (7.57)

for small z. It’s not hard to see from this taylor expansion that

z
∂fν(z)

∂z
= fν−1(z) z

∂gν(z)

∂z
= gν−1(z) (7.58)

These relations are often useful in determining derivatives of thermodynamic variables with
respect to β.

Recalling that PeV = 2Ee/3, it is straightforward to show that

Ne =
V

λ3
×
{
f3/2(z) FD

g3/2(z) BE
(7.59)

βEe =
3

2

V

λ3
×
{
f5/2(z) FD

g5/2(z) BE
(7.60)

βPeV =
2

3
Ee =

V

λ3
×
{
f5/2(z) FD

g5/2(z) BE
(7.61)

While the notation of f and g to distinguish between Fermions and Bosons prevents us
from expressing these symmetries in a completely compact manner, it is clear that the
mathematical properties of Fermions and Bosons are strikingly similar except for the value
of a = +1 for Fermions and a = −1 for Bosons. We will see that this difference causes
remarkably different statistics between the two types of particles.
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7.4.1 The classical limit

Recall that the number of particles in the classical ideal gas was derived from Q = ezQ1 =
ezV/λ

3
, with the mean number of particles satisfying

Nclassical,ideal = z
∂ log(Q)

∂z
=
V z

λ3
(7.62)

Recalling that fν(z) ∼ z − z2/2ν + · · · and gν(z) = z + z2/2ν + · · ·, it is clear that eq. 7.59
reduces to eq. 7.62 in the limit of z → 0 (where higher order terms can be neglected in
fν(z) and gν(z)). The limit of z → 0 is thus called the classical limit. Rearranging eq. 7.62
gives a better understanding of the meaning of this limit, with

zclassical ≈ ρλ3 ∝ ρT−3/2 (7.63)

The fugacity monotonically increases with density and monotonically decreases with tem-
perature in the classical limit. This is physically sensible: in previous chapters we discussed
the expectation that quantum effects would be relevant only when ρλ3 was large. For di-
lute gasses (with low ρ), the particles are rarely close to one another and ‘see’ each other
as classical point particles. For high temperatures, the thermal wavelength is so small
that particles ‘see’ each other as point particles as well. Both of these possible limits are
included in the classical limit of z → 0.

7.5 The Fermi Energy

7.5.1 Low Temperature Statistics

An interesting feature arises from the statistics of the Fermions in the limit of low temper-
atures. For T → 0,

〈nε〉 =
1

eβ(ε−µ0) + 1
≈
{

1 ε < µ0

0 ε > µ0
(7.64)

where µ0 = µ(T = 0) is the chemical potential at T = 0. Recall that the value µ0

depends on the statistics of the reservoir as well as the system, and we do not know it a
priori. Fermions must arrange themselves to completely occupy the lowest energy levels
available (those below µ0) with no particle occupying a higher energy level than the Fermi
Energy εF = µ0. No particle will be found at an energy level above the Fermi energy at
T = 0.

In many contexts (particularly spin-1/2 particles), one might care about the degeneracies
of each energy level for fermions (e.g. spin, for which two electrons can occupy the same
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energy level at different spins). We can write the number of particles at any energy level
in the presence of degeneracies (with g(ε) the degeneracy of each energy level ε) as

〈nε〉 =
g(ε)

eβ(ε−µ0) + 1
≈
{
g(ε) ε < µ0

0 ε > µ0
(7.65)

Note that g(ε) is not the same as gν(z), and when g(ε) is not specified we are assuming each
energy level has no degenerate states. These degeneracies do not affect the Fermi energy
εF = µ0 (since the occupancy 〈nε〉 is still a step function), but the presence of degenerate
energy levels will increase the number of particles in the system since more particles can
occupy lower energy levels.

7.5.2 Determining the Fermi energy

The definition of εF = µ0 is not terribly useful, since we don’t have a good sense of µ(T ) as
T → 0. Surprisingly, we can determine the Fermi energy in terms of the system’s physical
parameters using our knowledge of the density of states. We know that

N =

∫ ∞
0

dεD(ε)〈nε〉 →
∫ εF

0
dεD(ε) (7.66)

with the latter limit assuming T → 0 and 〈nε〉 converging on the step function. Recalling
that D(ε) = 2πV (2m/h2)3/2√ε is the density of states of the particles, integration shows
that

N =
4πgV

3

(
2m

h2

)3/2

ε
3/2
F εF =

h2

2m

(
3N

4πgV

)2/3

= µ0 (7.67)

Recall that N = 〈N〉 is still controlled by the reservoir, so we have not managed to avoid
the reservoir altogether. However, given N cold Fermions in our system we are able to
determine the maximum energy of each particle. The average energy is easily computed
as

E =

∫ εF

0
dεD(ε)ε =

3N

5
εF (7.68)

which is straightforward to show after integration and fiddling with constants a bit. We
can also determine the pressure because we know that

PV =
2E

3
→ 2NεF

5
=

(6π2)2/3~2V

5mg2/3

(
N

V

)5/3

(7.69)

which means P ∼ ρ5/3 for T → 0. At low temperatures, the pressure of a Fermi gas becomes
very large. This is physically intuitive: due to the Pauli exclusion principle, many particles
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are in excited states well above the thermal energy of the system, and an energetically
unfavorable configuration that leads to a high pressure.

Note that we can check

lim
T→0

TS = U + pV − µN =
3Nµ0

5
+

2Nµ0

5
− µ0N = 0 (7.70)

The entropy is directly computed via S = −kB
∑

ε pε log(pε) =
∑

ε<εF
1×log(1)+

∑
ε>εF

0×
log(0) = 0, since all energy levels below εF are occupied with 100% certainty. The entropy
vanishes at T → 0, as is expected from the third law.

7.5.3 The Fermi energy in metals

To determine the importance of the Fermi energy in common systems, it is useful to
consider the ‘gas’ of electrons in a perfect conductor, treated as free to move, and choose
the electron density to be

N

V
≈ (# valence electrons per atom)× (# atoms per cell)

volume of a cell
(7.71)

Pathria uses the example of sodium with one valence electron and two atoms per volume
Vcell = (0.43nm)3, and finds εF = 3.14eV. This numerical value for the Fermi energy means
the electrons are in the ‘cold’ limit (with εF & kBT ) for temperatures below

TF =
εF
kB
≈ 3.64× 104K (7.72)

The particular value of the Fermi temperature will vary with different atoms or lattice
spacings, but we expect this will be a good order-of-magnitude estimate for many metals. In
the context of metals and conductance, room temperature is always in the low-temperature
limit. The classical limit is always wrong for the behavior of electrons in a metal, and the FD
statistics must be taken into account in order to determine the properties of the behavior of
electrons in atoms. The classical and quantum theories can thus differ significantly.

7.6 Bose-Einstein condensation

7.6.1 Ground state occupancy as T → 0

The low temperature statistics of Fermions was driven by the Pauli exclusion principle,
which is not satisfied by Bosons. A large number of Bosons can potentially occupy the
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same state, and in the limit of T → 0 we naturally expect they may be driven to the ground
state. We’ve seen that the number of particles satisfies

Ne = N −N0 =
V

λ3
g3/2(z) N0 =

z

1− z
(7.73)

We recall that 0 ≤ z ≤ 1 for bosons, because the grand partition function is not a convergent
sum otherwise (and an infinite number of particles will be found in the system). g3/2(1) is a
finite integral, though, so we are guaranteed that regardless of the temperature that

g3/2(z) ≤ g3/2(1) =

∞∑
n=1

n−3/2 = ζ(3/2) (7.74)

This means that Ne ≤ V/λ3ζ(3/2) regardless of the value of z. We recall that z is a
parameter that sets the number of particles in the system and that if z → 1, N → ∞.
This immediately implies that for sufficiently low temperatures, we’ll find the ground state
heavily occupied (unsurprising since N0 = z/(1− z) and z ≈ 1−N−1

0 as T → 0). Since the
total number of particles is unbounded (N →∞ as z → 1), the ground state is unbounded
(N0 →∞ as z → 1), but total number of particles in all excited states is bounded (N →∞
as z → 1). This means that at sufficiently low temperatures an infinite number of particles
are found in the ground state and a negligible number in any excited state. The probability
of finding a particle in any state is pε → δε,ε0 , meaning the entropy vanishes again, S → 0
as expected.

The onset of condensation occurs when the ground state begins to become heavily popu-
lated, where

N >
V g3/2(1)

λ3
(7.75)

due to the fact that z → 1 as T → 0. We could write this in the equivalent ways of a
critical density

λ3ρc = g3/2(1) = 2.612... (7.76)

or critical temperature

T < Tc =
h2

2πmkB

(
N

V g3/2(1)

)2/3

(7.77)

≈ 2× 10−19ρ2/3 m2K (for 7Li) (7.78)

= 0.2ρ2/3 nm2K (7.79)

where the numerical values are for Lithium atoms, and indicate that the temperature
must be T � 1K for Bose Einstein condensation to occur for dilute gasses (with the
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experiments on Lithium performed at ρ ≈ 9×10−8nm−3, having Tc ≈ 4µK and experiments
performed at nK temperatures). Above the critical temperature, the majority of particles
will be thermally excited and Ne & N0, while below the critical temperature the ground
state is occupied by the most particles. This feature of Bosons is termed Bose-Einstein
condensation: as the temperature is decreased, the particles condense into the same lowest-
energy quantum state with virtually no contribution from the excited states. Note that
this would not be the case if Ne → ∞ as z → 1: the fact that ζ(3/2) is finite ensures a
finite number of particles are found in the ground state while the total number of particles
diverges. If Ne were to diverge (as is possible for systems with Ne ∝ gν(z)→∞ for ν ≤ 1),
an infinite number of particles would be found in the excited states and condensation to a
single state would not occur.

The interpretation of the calculation in eq. 7.75, which takes N = Ne = V/λ3g3/2(z) is
that particles are added only to the excited states, with N0 = 0. This is a reasonable
approximation for z � 0, but one might be concerned that as z → 1 there are some
particles in the ground state, and the number may not be negligible (since N0 → ∞ if
z = 1. Note that one could also determine the temperature at which Ne = N0, another
proxy for the onset of condensation. In this case, we would have Tmid = Tc + δT , and thus
λmid = λc(1 − δT/2Tc). If we assume µ(T ) ≈ µ1δT (that is, that µ = 0 and thus z = 1
precisely at Tc), then we find

N0 =
z

1− z
≈ 1

µ1δT
− 1

2
+O(δT ) (7.80)

Ne =
V

λ3
g3/2(z) ≈ V

λ3

(
ζ(3/2)−

√
4πµ1δT

)
(7.81)

≈ V

λ3
c

(
1− 3δT

2Tc

)(
ζ(3/2)−

√
4πµ1δT

)
(7.82)

The leading order term forN0 ≈ (µ1δT ), while the leading order term forNe ≈ V ζ(3/2)/λ3
c =

N . When N0 = Ne, δT ≈ (Nµ−1
) � 1 as expected. Then Tmid = Tc+

1
Nµ1

, with Tc ∝ N2/3.
Clearly, then, the onset of condensation can also be thought of as the crossover from low
occupancy of the ground state to high occupancy of the ground state.

7.7 Heat capacities for quantum particles

We showed that

Ue =
3V kBT

2λ3

{
f5/2(z) FD

g5/2(z) BE
(7.83)

If we wish to compute the heat capacity of these quantum systems, we arrive at a problem:
since CV = ∂U/∂T |NV , we must keep N fixed while varying the temperature.
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7.7.1 Heat capacity for Fermions

The heat capacity at constant volume for Fermions is

CV =
∂U

∂T

∣∣∣∣
NV

(7.84)

which leads to a complication: N must be held fixed when performing the temperature
variation. In the grand canonical ensemble, we cannot simply take temperature derivatives
to compute the heat capacity, we must first ensure that N is constant during the variation.
For fermions, we can do this by noting that

f3/2(z) =
Nλ3

V
= ρλ3 (7.85)

In the high-temperature limit, λ ∝ T−1/2 → 0, and since f3/2(z) is an increasing function,
it therefore must be that z → 0 as T →∞ as well (the classical limit). If we were to hold
µ fixed as T increases, the number of particles would be N ≈ V/λ3f3/2(1) ∝ T 3/2 →∞ as
T →∞, so N would vary with T . In the classical limit, we can thus write

f3/2(z) = z − z2

23/2
+ · · · ≈ z = ρλ3 N fixed (7.86)

The energy in this limit is therefore

U =
3V kBT

2λ3
f5/2(z) =

3V kBT

2λ3

(
ρλ3 − · · ·

)
=

3NkBT

2
(7.87)

Equipartition is satisfied, and CV = 3NkB/2 as is expected classically.

In the low temperature limit, higher order terms in the Taylor expansion contribute and we
cannot approximate z = ρλ3. However, we know that µ(T → 0) = εF , which constrains the
number of particles (that is, we can set z = e−βεF to hold N fixed). While a straightforward
calculation of the heat capacity is tempting, we find that

∂U

∂T

∣∣∣∣
NV

≈ 3V kBT

2λ3
f5/2(eβεF ) =

15V

4λ3kB
f5/2(eβεF )− 3V εF

2λ3T
f5/2(eβεF )eβεF

=
15V kB

4λ3
f5/2(eβεF )− 3V εF

2λ3T
f3/2(eβεF ) (7.88)

=
5U

2T
− 3NεF

2T
(7.89)

=
53NεF

5

2T
− 3NεF

2T
= 0 (7.90)
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That is, we must include higher order terms in our calculation in order to actually determine
the heat capacity for small T . To do so, we need an asymptotic form for the low temperature
limit of fν(z), which is not easily computed. Pathria shows in Appendix E that

fν(z) ≈ logν(z)

νΓ(ν + 1)

(
1 + ν(ν − 1)

π2

6 log2(z)
+ · · ·

)
(7.91)

which we will use without proof. We then have U ≈ 3NεF /5 + 5π2(kBT )2/12ε2F +O(T 4),
so eq. 7.89 becomes

CV ≈
Nπ2

2

k2
BT

εF
∼ T 1N1/3

V 2/3
(7.92)

This differs from the high temperature limit significantly: first CV → 0 in the limit of
T → 0, and second even for finite temperature has a leading order term ∼ kB/εF ∼ ρ−2/3

(so a dense gas has a very low heat capacity even for small T ). The heat capacity tells
us about the change in energy as temperature increases, and CV = 0 implies there will be
no change in U for small T . That’s reasonable for a system of Fermions at extremely low
temperatures: many particles are already in excited states due to the fact that they cannot
all simultaneously occupy the same state. Thus, only the highest energy state (the particle
with ε ≈ εF ) can be excited by a small change in temperature, producing a negligible
change in the system’s energy. Note that this is not the same temperature scaling of the
heat capacity for the frozen degrees of freedom, though (which scaled as e−β(ε1−ε0)). Not all
particles are trapped in the ground state, and excited energy states are already occupied,
contributing to the heat capacity.

7.7.2 Heat capacity for Bosons

The heat capacity for Bosons exhibits strikingly different behavior than for fermions due
to the existence of the critical temperature. We still must keep N fixed, but we have a
transition at a finite temperature and must account for the behavior of the heat capacity
on both sides.

Below the critical temperature (T < Tc) we have

N ≈ Ne =
z

1− z
z ≈ 1− 1

N
≈ 1 (7.93)

which is independent of the temperature and keeps N constant. That is, if z is constant
and close to 1, z/(1 − z) = N0 ≈ N is constant. The heat capacity below the critical
temperature is then

CV =
∂U

∂T

∣∣∣∣
NV

=
∂

∂T

3V

2λ3
g5/2(1) =

15V kB
4λ3

ζ(5/2) (T < Tc) (7.94)
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For T > Tc but still small, we can no longer hold z fixed when the temperature is varied.
We can directly compute

CV =
3V

2

∂

∂T

kBT

λ3
g5/2(z) (7.95)

=
15V kB

4λ3
g5/2(z) +

3V kBT

2λ3

∂g5/2(z)

∂T

∣∣∣∣
NV

(7.96)

=
15V kB

4λ3
g5/2(z) +

3V kBT

2λ3

∂z

∂T

∣∣∣∣
NV

g′5/2(z) (7.97)

so to constrain constant N we need only compute ∂z/∂T |NV . We do so by noting that
since N = V g3/2(z)/λ3 that

∂N

∂T
= 0 =

3V

2λ3T
g3/2(z) +

V

λ3
g′3/2(z)

∂z

∂T
⇒ ∂z

∂T
= −

3g3/2(z)

2Tg′3/2(z)
= −

3zg3/2(z)

2Tg1/2(z)
(7.98)

Substitution into eq. 7.97 yields

CV =
15V kB

4λ3
g5/2(z)− 9V kB

4λ3

g3/2(z)

g1/2(z)
z
∂g5/2(z)

∂z
(7.99)

=
15V kB

4λ3
g5/2(z)− 9V kB

4λ3

g2
3/2(z)

g1/2(z)
(7.100)

At the critical temperature (where z → 1), we thus see that

CV (z) =
15V kB

4λ3
g5/2(z)×

{
1 T = T−c

1−
3g2

3/2
(z)

5g1/2(z)g5/2(z) T = T+
c

=
15V kB

4λ3
g5/2(1) (7.101)

We find that

lim
z→1

3g2
3/2(z)

5g1/2(z)g5/2(z)
= 0 (7.102)

since g1/2(z)→∞ as z → 1, so we find CV is a continuous function. We also see that since
N = V/λ3

cζ(3/2) that

CV (Tc) =
15ζ(5/2)

4ζ(3/2)
NkB ≈ 1.926NkB (7.103)

Recall, though, that in the limit of high temperature we must recover the classical statistics,
with CV (T →∞) = 3/2NkB. This means that CV (T ) grows as T 3/2 for T < Tc, and at Tc
reaches a heat capacity greater than CV (∞) and thus begins to decrease. Differentiation of
eq. 7.101 is tedious, but we find that while CV is itself continuous the derivative ∂CV /∂T
is discontinuous: there is a cusp in the heat capacity when T = Tc, with CV an increasing
function for lower temperatures and a decreasing function for higher temperatures.
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7.8 The virial expansion

Classically we expect βPV/N = 1, so deviations from this law are driven by the quantum
properties of this system. This can be quantified at high temperatures by computing the
Virial coefficients, which assume a low density expansion of the equation of state,

βPV

N
=
∞∑
l=1

(±1)l−1al(ρλ
3)l (7.104)

In order to determine the coefficients al, we need to express z in terms of λ, which we can
do by writing

ρλ3 =

∞∑
n=1

zn
(±1)n−1

n3/2
(7.105)

with ρ = N/V the number density. We can formally invert this equation to determine z
as a function of λ:

z =
∞∑
n=0

bn(ρλ3)n (7.106)

Unfortunately, we do not know the coefficients bn, and must compute them somehow. We
can do that by realizing

ρλ3 =
∞∑
n=1

(±1)n−1

n3/2

[ ∞∑
m=0

bm(ρλ3)m
]n

(7.107)

All we have to do is solve for the coefficients bn by matching the coefficients of powers of
(ρλ3). For example, the 0th order terms in ρλ3 are

0 = b0 ±
b20

23/2
+

b30
33/2

± · · · ⇒ b0 = 0 (7.108)

Terms linear in ρλ3 will be

λρ3 = b1ρλ
3 ± b0b1ρλ3 2

23/2
+ b0b1ρλ

3 3

33/2
± · · · ⇒ b1 = 1 (7.109)

It is difficult to determine a general rule for the coefficients, but it is straightforward to
determine bn knowing all {b0, . . . , bn−1}. We find

b0 = 0 b1 = 1 b2 =
∓1

2
√

2
b3 =

1

4
− 1

3
√

3
· · · (7.110)
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and can therefore write

βPeV

Ne
=


f5/2(z)

f3/2(z) FD
g5/2(z)

g3/2(z) BE
(7.111)

=

∑∞
n=1[

∑∞
m=1 bm(ρλ3)m]nan−1/n5/2∑∞

n=1[
∑∞

m=1 bm(ρλ3)m]nan−1/n3/2
(7.112)

with all but the first term arising from determining the linear term in (b0 + b1ρλ
3 + · · ·)n.

This expression is clearly horrible, but cutting off the sums at a finite value of n and simply
taking Taylor expansions isn’t all that hard. Grouping the coefficients of (λ3ρ) gives the
desired virial coefficients,

a1 = 1 a2 =
∓1

4
√

2
a2 =

1

8
− 2

9
√

3
· · · (7.113)

where the other coefficients have been previously computed. Note that the Virial expansion
is generally used to identify the effect of interactions between particles, but in this case
these particles are noninteracting! This is a purely quantum effect. All of this work on the
virial expansion is only useful so long as ρλ3 � 1, which is not a meaningful expansion for
low temperatures (with λ→∞).

7.9 Summary

The statistics for Bosons and Fermions exhibits a number of unique and unexpected prop-
erties at low temperatures that would never have been predicted classically. In the grand
canonical ensemble (which makes the calculation of all thermodynamic variables signif-
icantly easier than the microcanonical or canonical ensembles), we found that all ther-
modynamic variables can be written in terms of Fermi-Dirac or Bose-Einstein functions.
Because the occupancy of each energy level approaches a step function for Fermions (due
to the Pauli exclusion principle), the low temperature behavior of Fermions is to pack each
particle in the lowest energy levels possible up to the Fermi energy εF . Bosons pack par-
ticles in the ground state as the temperature decreases, and exhibit a second order phase
transition at a critical temperature Tc at which the chemical potential reaches its minimum
and virtually all particles are found in the ground state.



Chapter 8

Bose-Einstein Systems (Pathria
Ch 7.2-7.4)

The previous chapter described the statistics of noninteracting quantum particles, and we
found a surprising phase transition in the behavior of Bosons: below a critical temperature
an infinite number of particles will condense in the ground state but only a finite number in
the excited states. This produces a discontinuity in the heat capacity that indicates a phase
transition. A remarkable set of experiments was performed in the 1990s to demonstrate
this phenomenon does indeed occur, which we will describe in this chapter. Other examples
of particles and quasiparticles that are not constrained by the Pauli exclusion principle are
photons and phonons, and this chapter will discuss their statistics as well.

8.1 Ultracold gasses and Bose Einstein condensation

8.1.1 Cooling atoms to nanoKelvin temperatures

Bose Einstein condensation occurs

1. For noninteracting bosons. To see this effect in a gas of particles, we must use
uncharged (therefore noninteracting) atoms that are composite particles with integral
spin. Examples include 2H, 7Li, 87Rb, and a variety of others.

2. When the temperature is low. Tc = h2

2πmkBζ2/3(3/2)
ρ2/3. Below this temperature, the

ground state becomes heavily occupied and effectively all particles will be found in
the ground state.

150



CHAPTER 8. BOSE-EINSTEIN SYSTEMS (PATHRIA CH 7.2-7.4) 151

A significant barrier to the creation of a Bose Einstein Condensate (BEC) is that requires
a very low temperature in practice, on the order of nanokelvins. This is because there is an
upper bound on the density of the particles before they begin interacting with each other
strongly. Reaching nanokelvin temperatures is hard to imagine in a standard refrigerator,
and a number of clever ideas have been designed to reach remarkably low temperatures.
Bose Einstein condensation was accomplished via a two-stage cooling process.

Particle Frame

intial

Momentum

Energy

Particle Frame

absorbtion

Momentum

Energy

Particle Frame

emission

Energy

Lab Frame

intial

Momentum

Energy

Lab Frame

absorbtion

Momentum

Energy

Lab Frame

emission

Energy

Momentum

Momentum

Figure 8.1: Doppler cooling. In the frame of reference of the particle, the photon is
doppler shifted to a higher momentum. If the frequency of the laser ω is chosen to match
the energy ε1 − ε0 after that doppler shift, particles will absorb the laser light, and reemit
it in a random direction. In the lab frame, photons are absorbed by the particles, then
reemitted in a random direction with a higher energy, while the momentum of the particle
is changed. The momentum of the particle in the original direction of motion is reduced,
producing a net slowing of the particle.

1. First, the gas is slowed by a laser (termed laser or doppler cooling, and sometimes
called ‘optical molasses’). A laser is shone on the gas at a specifically chosen fre-
quency, slightly lower an energy level of the particles. To move between different
energy levels, the atom will require a discrete energy quanta to make the transition.
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If the frequency of the laser is specifically chosen to be near, but not at, any resonant
quanta of energy. Atoms that are moving toward the laser beam see a slight doppler
shift towards their resonant frequency, and thus are more likely to absorb a photon
(as sketched in Fig. 8.1). From the frame of reference of the atom, which is moving
in the lab frame,

(a) The atom sees a photon ~ω′ ≈ (ε1 − ε0) > ~ω. This photon is at the resonant
frequency, so is absorbed. Later, it is reemitted in a random direction, releasing
the same amount of energy in the atom’s frame: ~ω′.

(b) In the lab frame, an atom is moving towards the laser with frequency ~ω. It
absorbs the photon and slows down due to the absorption of the momentum in
the opposite direction. It then later releases a photon of energy ε1 − ε0 > ~ω.
Thus, in the lab frame a photon with higher energy is produced, and thus the
atom’s energy is reduced.

The slowing of the particles is due to the release of higher energy photons, reducing
the kinetic energy of the particles. Some fast moving particles may be lost to the
system during this process (those significantly above the optimal doppler shift in the
direction of the laser).

While the absorption of a photon is directional (moving towards the laser) the ree-
mission of that energy packet is not directional. That means, by momentum con-
servation, that atoms moving towards the laser source will be slowing down. Atoms
at rest or moving away from the laser will not absorb the photons, since the effect
of the doppler shift does not bring the photon’s energy to match an energy differ-
ence between levels. The net result of this is atoms that are stationary relative to
some preferred direction. Since this can be applied in all three axes, particles can be
localized with a significantly reduced energy.

This approach is limited by the fact that the momentum of a photon is ~ω/c, so the
momentum of the atom cannot be below p2

min/2m ∼ (hν/c)2/2m ∼ kBT , or Tmin ∼
h2ν2/2mc2kB. For 87Rb, the first atom used to exhibit a BEC, this temperature is
around 1µK. Seems cold, but not cold enough.

2. Since there is a lower bound on the mean energy, we can’t cool below some intrinsic
point with laser cooling. Lower temperatures can be obtained by magnetic trapping
and evaporative cooling. First, a magnetic trap is generated for the atom with
a harmonic profile. Recall that for a noninteracting ideal gas of particles with a
dipole moment µ the energy is E = −µ · B. An important experimental aspect
experimentally is reducing the interactions between atoms, and dipole-dipole coupling
is minimized for Alkali metals such as Lithium, Sodium, and Rubidium, for which
Bose Einstein condensation has been observed.



CHAPTER 8. BOSE-EINSTEIN SYSTEMS (PATHRIA CH 7.2-7.4) 153

Having trapped atoms in an approximately parabolic magnetic trap while avoiding
interactions between the atoms, we are still left with µK atoms that are far above the
BEC transition temperature. The strength of the magnetic field can be uniformly
reduced, meaning that particles with energy approaching the point at which the field
is no longer locally harmonic are likely to escape from the ‘harmonic’ well. High
energy atoms will be able to escape the trap via barrier crossing while low energy
particles will be trapped in the well (pictured in Fig. 8.1(B)). In 87Rb, evaporative
cooling reduced the temperature to ∼ 20nK, sufficient for Bose Einstein condensation.
Arbitrarily low temperatures are obtainable using this approach, but with a loss of
the total number of particles in the system.

Inhomogeneous magnetic �eld:  Blue down, red up

Many

atoms
Many

atoms

Few

atoms

B=0

B>>0

Figure 8.2: Magnetic trapping of particles. Particles in an inhomogeneous field will align
their dipole moments with the external field locally (pictured in the main figure). In places
with strong fields (either pointing up or down), the particles will be strongly aligned with
the field, significantly reducing the lowest energy level. In places with weak external fields,
particles will have random dipole orientations with little reduction in the energy. Thus,
most particles will be found within some domain of strong magnetic fields with energetic
barriers between them associated with weak fields (diagrammed in the inset).

8.1.2 Observation of the condensate

How do we go about ‘seeing’ the BEC, if one exists? One approach is fluorescence, phase
contrast, or other direct imaging techniques. A large number of particles in the same
quantum state will scatter light identically, and thus should be detectable. However, the
condensate will still be dilute (since the particles need to be effectively noninteracting)
so identification of the condensate may not be simple. Alternatively, we can look at the
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dynamics of the particles after they are released from the trap. If we suddenly turn off the
harmonic trapping, all particles suddenly become free particles. All particles in the ground
state of the BEC will have the wavefunction

ψ(xα, t) = 〈xα|e−iĤfreet/~|0〉HO (8.1)

=
∑
n

e−(~n2π2/2mL2)it/~e−iπnxα/L〈n|free|0〉HO (8.2)

=
∑
n

e−(~n2π2/2mL2)it/~e−iπnxα/L
∫
dx′e−iπnx

′/L

(
mωα
π~

)1/4

e−mω(x′)2/2~

which mixes the harmonic oscillator states with the free particle hamiltonian (recall that
the trap strength does not need to be identical in all cartesian coordinates). From this it
is possible (and is a homework problem) to show that

|ψ(xα, t)|2 =
1

τα

(
2m

hωα

)1/2

exp

(
− 2πmx2

hωατ2
α

)
τα(t) = ω−2

α + t2 (8.3)

→ 1

τα

(
2m

hωα

)1/2

exp

(
− 2πmx2

hωαt2

)
(8.4)

which in the limit of t→ 0 approaches a delta function (with σα(t)→∞) and approaches
a uniform distribution at t→∞. Importantly, τα → t for t→∞. This means the particle
is expected to eventually become delocalized, but the rate at which it does so is dependent
on the confinement frequency ωα, which can be tuned to differ across each axis.

We can likewise determine the distribution of particle locations for the excited states
as

ψe(r, t) =
1

Ne
〈r|e−iĤt/~

∞∑
k=1

〈nk〉|k〉HO (8.5)

which incorporates all contributions from the excited states. This requires us to compute
the overlap of the free particle wavefunctions with all excited harmonic oscillator states,
which is highly non-trivial. Beale has a very incomplete and unclear argument that the
eventual expression for the number density of atoms is

|ψe(r, t)|2 =
1

Neλ

∞∑
j=1

eβµj

j3/2

∏
α

1√
1 + ω2

αt
2

exp

(
− j βmω2

αr
2
α

2(1 + ω2
αt

2)

)
(8.6)

→ 1

Neλ

∞∑
j=1

eβµj

t3ω1ω2ω3j3/2
exp

(
− j βr2

2t2

)
(8.7)

Accepting this equation without actually calculating it, the significant factor is the fact
that, as t→∞, the exponential term becomes isotropic, and does not depend on the axes.
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This means that the distribution of the particle positions in the ground state will not be
homogeneous after the trap is removed, but the positions of the particles in the excited
states will be. Inhomogeneities in the position distribution were found in the velocity
distribution function after the magnetic trap was turned off, showing that the

The evolution of the momentum of the higher energy states is more spatially symmetric
than that of the single ground state. This difference provides the ability to observe the
BEC. By creating an inhomogeneous harmonic oscillator, atoms are trapped and a BEC
is created (specifically, with ωx = ωy � ωz). Once the trap is turned off, the particle
density will evolve such that the excited states depart symmetrically, but the BEC departs
much more slowly in the x and y directions. All of this was observed experimentally with
Rubidium, and later with Lithium, Sodium, Potassium, etc.

8.2 Blackbody Radiation

Blackbody radiation is one of the most fundamental applications of quantum statistics,
and one of its earliest successes. A blackbody is typically described as a cavity with
a small hole through which photons can be emitted, but these details aren’t important
thermodynamically. We imagine some object with volume V maintained at a temperature
T . Atoms in the blackbody will be thermally excited, and will spontaneously emit photons
due to the excitation. The particular insight from quantum mechanics was that εs = ~ωs for
a photon with frequency ωs. Photons emitted with frequency ωs will have energy ~ωs. The
energy will be Boltzmann distributed (since we’re specifying the body is at temperature
T ), but since photons are being spontaneously created we don’t have a restriction on the
total number of particles. Thus, if we define ns as the number of photons with frequency
ωs, we will have

〈ns〉 =
∑
s

nsps (8.8)

=

∑
εs
nse
−βεs∑

εs
e−βεs

=

∑∞
ns=0 nse

−βns~ωs∑∞
ns=0 e

−βns~ωs (8.9)

= − 1

~β
∂

∂ωs
log

(∑
ns

e−βnsωs~
)

(8.10)

=
1

e+β~ωs − 1
(8.11)

This is equivalent to a system of bosons with z = 1 (no restriction on the number of
particles). You may immediately think: ‘what’s the scam here? z = 1 is forbidden for
bosons! They’re all in the ground state!’ You would be correct, but here, the ground state
is a non-existent photon (one with zero energy, and thus un-emitted). The ‘ground state’
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in this case is defined by the absence of radiation, so having an infinite number of particles
in the ground state does not correspond to ‘condensation’. Thus, z = 1 is fine here: the
excited states Ne are finite (as we showed in the previous sections), N0 refers to the ground
state of our blackbody (meaning zero-energy photons), and thus the total energy of the
system is finite.

We now know 〈ns〉, but in order to compute averages easily we need to determine the
density of states D(ε), or equivalently D(ω) recognizing that ε = ~ω = pc since a photon
carries momentum p = ~ω/c. The standard calculation of∑

n

f(n)→ V

h3

∫
d3pf(p) =

4πV

h3

∫ ∞
0

dpp2f(p) =

∫ ∞
0

dωD(ω)f(ω) (8.12)

yields

D(ω) =
4πV ~3ω2

h3c3
=

V ω2

2π2c3
(8.13)

In this calculation, we have neglected a factor of 2 due to the fact that photons can be
polarized in two directions (relative to their axis of propagation), so in fact the density of
states must be increased by a factor of 2. This factor is important for a precise calculation,
but we can simply accept the fact that that D(ε) = gDg=0(ε) with a degeneracy g, and
photons have a degeneracy g = 2.

In particular, we can determine the energy density (energy per unit volume)

u(ω) = ε(ω)D(ε)〈nε〉 = ~ωD(ω)〈nω〉 =
~

π2c3

ω3

e~ωβ − 1
(8.14)

which is the energy density between ω and ω + dω (that is, we can compute the mean
energy by integrating E/V =

∫
u(ω)dω). This is a major success of quantum mechanics

(which prescribes an energy ~ω to a photon) because of the absurd limit as ~ → 0 that
was obtained classically:

u(ω) =
ω3

π2c3

~
eβ~ω − 1

≈ kBTω
2

π2c3
(8.15)

which permits an infinite energy
∫
u(ω)dω =∞. This was known as the ultraviolet catas-

trophe, and prior to QM there was no clear resolution to the problem. Both Plank and
Einstein worked on the development of quantum blackbody radiation, and energy quanti-
zation was assumed by Plank specifically to resolve the ultraviolet catastrophe. Classically,
electromagnetism was a continuous spectrum, and this was the first time that it was pro-
posed that light came in discrete packets (quanta) called photons.

There are a few features that are worth noting:

U = V

∫
dωu(ω) =

~V
π2c3

∫
dω

ω3

eβ~ω − 1
=

(kBT )4

π2~3c3

∫ ∞
0

dx
x3

ex − 1
=

6(kBT )4

π2~3c3
g4(1) (8.16)
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where we’ve already sorted out the Bose Einstein function of g4(1) =
∑

n n
−4 = ζ(4), and

Mathematica will tell us that ζ(4) = π4/90. We thus find that

U =
π2(kBT )4V

15~3c3
(8.17)

which, importantly, is not infinite (as predicted classically). This is wholly dependent on
the concept of Boson statistics (although it predates it by decades): there are a finite
number of bosons that can occupy excited states, and in our case particles refer to photons
with nonzero frequencies.

8.3 Normal Modes and Phonons

We can imagine a system of N sites located at x̄i. Particles are bound to these sites with
a potential Φ(x1, . . . , xN ), where ∂Φ/∂xi|x̄i = 0, so the energetic minimum occurs when
each particle is located at the site x̄i. We can then write

Φ(x1 · · ·xN ) ≈ Φ(x̄1, · · · , x̄M ) +
1

2

∑
ij

∂2Φ

∂xi∂xj

∣∣∣∣
{x̄i}

(xi − x̄i)(xj − x̄j) (8.18)

= Φ0 +
1

2

∑
ij

αijyiyj (8.19)

with yi = xi − x̄i. This is simply a multidimensional Taylor expansion, neglecting cubic
and other higher order terms. The Hamiltonian is then

H = Φ0 +
∑
i

p2
i

2m
+
∑
ij

αijyiyj
2

(8.20)

These are coupled harmonic oscillators, which are difficult to deal with since all of the
variables are coupled to one another. However, we do know we can make a change of
variables to find a harmonic oscillator (we’ve done this in a number of homework problems).
The normal modes are simply determined by the eigenvectors of the matrix Aij = αij , and
the characteristic frequencies are given by the eigenvalues of the matrix (over m). Writing
A = PTΛP, we can see that Upot = yTAy = yTPTΛPy = qTΛq with q = Py a linear
combination of the original y′is, and where P−1 = PT since A is real and symmetric.
Importantly, the potential energy is now Upot =

∑
i λiq

2
i is diagonal in this normal basis,

and the kinetic energy is as well: K = m
2 ẏT ẏ = m

2 q̇PP−1q̇ = m
2 q̇T q̇. Thus we can

rewrite,

H = Φ0 +
m

2

∑
i

(
p2
i + ωiq

2
i

)
(8.21)
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where the ωi = 2λi/m’s are the characteristic frequencies. We also saw that this trick
worked quantum mechanically as well: we used the same change of variables to write

− ~
2

2m

∑
i

∇2
i +

∑
ij

αijyiyj =
1

2m

∑
i

(
p̂2
i +m2ω2

i q
2
i

)
(8.22)

So, we’ve successfully replaced our N interacting particles with a set of N non-interacting
phonons: quasiparticles that represent the physics of the system (assumed quadratic) as
a set of noninteracting harmonic oscillators. Phonons are not particles, but rather nor-
mal modes of motion in the original system. In particular, the energy of the system is
going to be the same if we treat it on the level of particles (which is hard, since they’re
interacting through the matrix A) or phonons (which is very easy because they are non-
interacting). The energy of a one-dimensional system will be Φ0 +

∑
s ~ωs(ns + 1/2) =

(Φ0 + ~/2
∑

s ωs) + ~
∑

s nsωs, with each oscillator having quantum numbers {ni}. Note
that unlike blackbody radiation, there are precisely N oscillators (rather than an arbitrary
number of photons).

The probability of a particular oscillator being at energy level ns is determined from the
Boltzmann distribution p(ns) ∝ e−β~ωs(ns+1/2), which is normalized noting that

∑
n e
−β~ω(n+1/2) =

eβ~ω/2/(eβ~ω − 1) = Q1(ω), the partition function for a single phonon. We can then deter-
mine the mean energy

U = Φ0 +
N∑
i=1

∞∑
ni=0

~ωi(ni + 1
2)e−β~ωi(ni+1/2)

Q1(ωi)
(8.23)

=

(
Φ0 +

~
2

∑
i

ωi

)
+
∑
i

~ωi
eβ~ωi − 1

(8.24)

where the sum can be easily evaluated by computing −β−1∂ log(Q1(ω))/∂β. The first
terms are temperature-independent and refer to the intrinsic energy of the lattice. The
temperature dependent second portion is the only term that contributes to the statistics
at nonzero temperatures, and is exactly the same as the energy we found for photons in a
blackbody, with

〈εs〉 =
~ωs

e+β~ωs − 1
= εs〈nεs〉 (8.25)

where we have identified the mean occupancy 〈nε〉 = 1/(z−1eβε − 1) for z = 1. There
are some differences between the physical systems, though: the blackbody had a variable
number of particles (photons), but our solid has a specific set of N characteristic frequencies
(phonons).

A problem with this analysis is that we have no idea what the frequencies ωi are. Computing
ωi for an arbitrary system is complicated, because we’ve got to diagonalize an N×N matrix
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(which is painful analytically and computationally problematic if N is large). It’s easier
to simply write down a model for the ωi. By far the simplest approximation is that all ωi
are equal, and originally used by Einstein. However, we can compute the average energy
quite easily: U = Ulattice +N~ω/(eβ~ω − 1). The heat capacity is

CV =
∂U

∂T
= kBN

eβ~ω(β~ω)2

(eβ~ω − 1)2
= NkBE(β~ω) (8.26)

with E(x) = x2ex/(ex − 1)2). This means CV → 0 as T → 0 exponentially fast as the
vibrational degrees of freedom become frozen. This assumes the vibrations are in one
dimension, but since the phonons are noninteracting we can write CV = 3NkBE(β~ω) in
three dimensions.

Assuming ωi is a constant is a really strong assumption, and it’s better to assume that there
are some distribution of frequencies. Initially, we might expect that there is a maximum
vibrational frequency available to the solid, so the number density of the normal mode
frequencies D(ω) will satisfy ∫ ωd

0
D(ω)dω = 3N (8.27)

with the factor of three coming from the assumption that this is a three dimensional solid.
We’ve seen an expression like this before: the Fermi energy was defined as

∫ εF
0 dεD(ε) = N ,

which allowed us to determine the unknown maximum energy εF in terms of N . Don’t get
confused, though: eq. 8.27 does not require fermion statistics, but rather solely relies on a
distribution of frequencies that is capped. In order to use the same trick here as we did for
computing the Fermi energy, we need to determine a reasonable estimate of the density of
states. We found previously that in the case of blackbody radiation that in the classical
limit (with ~→ 0) that

Dblackbody(ω) =
V ω2

2π2c3
(8.28)

which we also derived in eq. 8.13 as well with ε = ~ω. Here we’ll reuse this result, with an
additional assumption that the ‘speed of light’ in a material system is (a) not actually c, but
is a speed determined by the inter-particle interactions, and (b) may differ for transverse
and longitudinal wave propagation. Assuming the frequency distribution is uniform, we
then can write ∫ ωD

0
dω
ω2V

2π2

(
1

c3
L

+
2

c3
T

)
= 3N (8.29)

and after integration we find the Debye frequency ωD:

ω3
D =

18π2N

V

(
1

c3
L

+
2

c3
T

)−1

(8.30)
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which means the density of states can be written in the simpler form

D(ω) =
9Nω2

ω3
D

(8.31)

This is a fine enough approximation, although to see the definition of a ‘bad fit’, see
Pathria Fig 7.15 (7.9 2nd ed) comparing the Debye estimate for the density of states to an
experimentally determined distribution. We can use the density of frequencies to compute
the heat capacity as

CV = −kBβ2 ∂

∂β

∫ ωD

0
D(ω)

~ω
e~ωβ − 1

= kb

∫ ωD

0
dωD(ω)

eβ~ω(~ωβ)2

(eβ~ω − 1)2
(8.32)

=
9NkB

(β~ωD)3

∫ β~ωD

0

x4ex

(ex − 1)
(8.33)

= 9NkB

(
(β~ωD)

eβ~ωD − 1
+

4

(β~ωD)3

∫ β~ωD

0

x3

ex − 1
dx

)
(8.34)

where the last relation comes from integration by parts (with du = dxex/(ex− 1)2). In the
limit of T → 0 (β → ∞) the first term vanishes exponentially fast and the second term
looks like

CV ≈
36NkB

(β~ωD)3

∫ ∞
0

dx
x3

ex − 1
=

216NkB
(β~ωD)3

g4(1) (8.35)

The heat capacity of a solid thus vanishes as T 3. This differs from the heat capacity we
found with simple harmonic oscillators, with

CHOV =
x2ex

(ex − 1)2
(8.36)

which vanishes exponentially fast. The T 3 law is in fact observed in experiments, so it is
therefore important to account for the distribution of frequencies in a solid (even if the
approximation is a very poor fit to the actual distribution).

8.4 Summary

Photons and the quasiparticle phonons are well described by noninteracting particles, and
are Bosons since they are not constrained to be in different quantum states. That is, a
photon can have frequency ω without forbidding another photon to be emitted with the
same frequency, and likewise for phonons. In this chapter, we saw that the statistics of
these systems are well described by Bose Einstein statistics given the density of states D(ε),
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with an important exception: the ‘ground states’ could never be meaningfully occupied
by an infinite number of particles. The phenomenon of Bose Einstein condensation was
indeed observed experimentally on ultracold Rubidium-87 atoms in a remarkable series of
experiments, demonstrating the correctness and utility of Bose Einstein systems.



Chapter 9

Fermi-Dirac Systems (Pathria Ch
8.2-8.3)

Bosons provided a rich set of interesting physics in the previous chapter, with the con-
densation transition occurring when the temperature reached a critical point. Each of
these Bose-Einstein systems were integral spin, meaning that the statistics of individual
electrons (either free or those that cannot be treated as part of a composite) cannot be de-
scribed using any of the previous chapter. In this chapter, we’ll explore the implications of
Fermi-Dirac statistics on the behavior of particles in a magnetic field, and the thermoionic
emission of electrons.

9.1 Paramagnetism

9.1.1 The Fermi Energy in a magnetic field

A first example is that of a gas in a magnetic field, with ε = p2/2m − µ · B with µ the
intrinsic magnetic moment of the particles. For the moment, let us consider only spin
1/2 particles, so µ points parallel or antiparallel to the magnetic field, with no change
in magnitude. The notation of µ as a dipole moment and µ a chemical potential here is
quite obnoxious but necessary for historical reasons. In this chapter, I will simply replace
occurrences of the chemical potential with β−1 log(z) = µ, and the notation εB = µ ·B as
the energy associated with the magnetic field.

The average number of particles at each energy level is computable straight from our results

162
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in Sec. 7.2.2,

〈n+
p 〉 =

1

z−1eβ(p2/2m−εB) + 1
〈n−p 〉 =

1

z−1eβ(p2/2m+εB) + 1
(9.1)

where 〈n±p 〉 is the average number of particles with momentum p and parallel (or antiparal-
lel) to the field. In the limit as T → 0, these distributions will both become step functions,
but not the same step function, due to the differing sign of B. Antiparallel particles are
constrained to have a lower momentum than parallel particles. We can find in particular
that

N± =

∫ ∞
0

D(ε)

z−1e+βε∓βεB + 1
≈
∫ log(z)/β±εB

0
D(ε) =

4πV

3

(
2m

h2

)3/2[ log(z0)

β
± εB

]3/2

(9.2)

To determine εF , we would need to solve

N = N+ +N− =
4πV

3

(
2m

h2

)3/2[(
εF + µB

)3/2

+

(
εF − µB

)3/2]
(9.3)

Determining εF in terms of N in this equation is no easy task (try solving it using Mathe-
matica...). However, it is possible to consider the magnetization in the limit of B → 0. In
that case,

N ≈ 8πV

3

(
2m

h2

)3/2

ε
3/2
F +O(B2) (9.4)

which gives the leading order Fermi energy in the presence of a weak field. This is the same
as what we found in the absence of a magnetic field in chapter 7. Note that the factor of 8 is
twice the original factor of 4 for the fermi energy we derived previously, because the particle
can either be spin up or down, and without an external field this is simply a degeneracy
of g = 2. This leads to a Fermi energy of εF ≈ h2/8m(3N/2πV )2/3 +O(B2).

9.1.2 Paramagnetic effects

The total magnetic moment is the net magnetic dipole moment of the entire system, M =
µ(N+ −N−). We computed the magnetic susceptibility for a classical gas, with

χ0 = lim
B→0

1

V

∂M

∂B
≈ Nµ2

3kBT
(classical) (9.5)

For fermions with a magnetic dipole moment, we find

M = µ(N+ −N−) ≈ µ
4πV

3

(
2m

h2

)3/2

× 3ε
1/2
F µB +O(B2) (9.6)

=
4πµV

3

(
2m

h2

)3/2

ε
3/2
F

[(
1 +

µB

εF

)3/2

−
(

1− µB

εF

)3/2]
(9.7)
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so that

χ0 =
4πµ2(2m)3/2

h3

√
εF =

2m(12π2)1/3

h2
µ2

(
N

V

)1/3

(fermions) (9.8)

where we have used the fact that εF = (3N/8πV )2/3h2/2m derived when we first worked
out the fermi energy. Note that this is independent of the temperature as T → 0, meaning
the classically derived curie’s law will not hold for fermions. It will, however, hold for
bosons (for which no fermi energy exists). These results show that Fermions with an
intrinsic dipole moment:

• Will align with an externally applied magnetic field, as their magnetic susceptibility
is positive

• Will have a finite response for low temperature, unlike the classically predicted χ0 ∼
T−1. For T → 0, classical particles have a large response because all particles are in
the ground state, and aligning with the magnetic field produces a huge decrease in
the total system energy. Since all particles can occupy the same quantum state, there
is no problem with this arrangement. Quantum mechanically, the energy associated
with aligning with the field is relatively modest in comparison to the Fermi energy
for low fields, so the response of the system to a weak field will be smaller.

• Will not retain their magnetization after the field is removed, since M → 0 as B → 0
(unlike ferromagnets). We’ll be talking about spontaneous magnetization again soon.

This effect is called paramagnetism, and this low temperature limit twas not explain-
able using classical mechanics as the magnetic dipole moment arises from the particle’s
spin.

9.2 Diamagnetism

9.2.1 Quantization due to a vector potential

There is another quantum effect in a magnetic field that becomes important in the absence
of an intrinsic magnetic moment. The Hamiltonian for a charged particle in a magnetic
field is

Ĥ =
1

2m

(
p̂− eA

)2

(9.9)

with A the vector potential and B = ∇ ×A. We can choose Ax = −By, Ay = Az = 0
for a field pointed in the z direction (this chooses a gauge, and other choices are possible)
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which produces a magnetic field in the z direction. The Hamiltonian is then

H =
1

2m

[
(p̂x − eBy)2 + p̂2

y + p̂2
z

]
(9.10)

which couples the momentum in the x direction with the position in the y direction. In the
z direction the Hamiltonian decouples nicely, so we assume that we can use separation of
variables to find ψ(x, y, z) = ψ2(x, y)Z(z) from which we readily find that Z(z) ∝ eipzz/~ =
eikzz. The separation in x and y is less clear, because the Hamiltonian couples p̂x with y.
These operators commute, though, and we’ll find we can still use separation of variables.
Taking ψ = XY Z, we find

Ĥψ

ψ
= − ~

2

2m

(
X ′′

X
+
Y ′′

Y
+
Z ′′

Z

)
+
i~eBy
m

X ′

X
+

(eBy)2

2m
= E (9.11)

If we take the anzatz that X(x) ∝ eipxx/~, we can readily see that

− ~
2

2m

Y ′′

Y
+
eBpxy

m
+

(eBy)2

2m
= E − ~

2(p2
x + p2

z)

2m
(9.12)

(9.13)

or after completing the square

− ~
2

2m

Y ′′

Y
+

(eB)2

2m

(
y +

~px
eB

)2

− ~
2p2
x

2m
= E − ~

2(p2
x + p2

z)

2m
(9.14)

(9.15)

finally leading to

− ~
2

2m

Y ′′

Y
+
mω2ỹ2

2
= E − ~

2p2
z

2m
(9.16)

(9.17)

with ỹ = y − kx/eB and ω = eB/m. This final equation is simply a harmonic oscillator,
leading to a total energy of the system

ε =
p2
z

2m
+mω(ny +

1

2
) (9.18)

Note that px does not appear in this expression, as it has been merged into the harmonic
oscillator term. The momentum in the x direction thus acts solely as a degeneracy: re-
gardless of the particle’s x momentum the total energy is the same. There is a constraint
on the momentum though: y is still confined within a box and the offset on position
(kx/eB = 2πnx/eBL for nx the integer energy level) should not shift the particle outside
of the box. Then we expect nx . hL2/eB, giving a degeneracy (number of equivalent
energy states) of g = hL2/eB due to the x momentum.
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9.2.2 Statistics of diamagnetism

The partition function for the particle can now be computed:

log(Q) =
hL2

eB

∫
Ldpz
h

∑
j

log

(
1 + ze−βp

2
z/2m−β~ω(j+1/2)

)
(9.19)

with the multiplying factor accounting for the degeneracy in the x direction. The T →
0 limit is complicated to analyze, but it is often the case that particles can be found
in magnetic fields for finite T . For sufficiently large T we expect the system will be
Botltzmannian, and will thus satisfy

log(Q) =
eBL2

h

∫
Ldpz
h

∑
j

ze−βp
2
z/2m−β~ω(j+1/2) (9.20)

=
zV eB

h2

(
2πm

β

)1/2 1

2 sinh(β~ω/2)
(9.21)

(9.22)

from which we can derive the mean magnetization M = 〈∂H/∂B〉 = β−1∂ log(Q)/∂B =
(m/eβ)∂ log(Q)/∂ω, yielding

χ =
zV

λ3

e~
2m

(
1

sinh(x)
− x cosh(x)

sinh2(x)

)
(9.23)

with x = βe~B/2m. However, we also can compute the average number of particles in the
system,

z
∂ logQ
∂z

=
zV eB

h2

(
2πm

β

)1/2 1

2 sinh(β~ω/2)
(9.24)

and some algebra shows that

M = −~Ne
2m

(
coth(x)− 1

x

)
≈ − (~e)2B

6m2kBT
N (9.25)

The important aspect of this is that the sign of the mean magnetiszation is negative,
not positive. These particles will become antiparallel to the field, not parallel. This is a
purely quanttum mechanical effect (is zero in the limit of ~ → 0), and was observed and
unexplained prior to the introduction of QM. Note that this contribution would also exist
in the case of particles with a dipole moment (like the paramagnet above). However, the
diamagnetic effect will be small so long as the magnetic dipole moment µ is not very small
(� ~2)
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9.3 Thermoionic emission and the photoelectric effect

9.3.1 Current density over a work function

In order to accurately predict the behavior of current and electron statistics in a metal,
we’ll make a simple approximation: electrons must overcome some fixed barrier height in
order to transition from bound to unbound. This assumes the details of the potential are
unimportant, and ignores any details of the band structure of the system. In order for
the electron to move in a particular direction, we assume it must be unbound by having
a momentum pz ≥

√
2mW where W is the barrier height. Note that this transition is

directional, as opposed to isotropic, providing the general feature of a lattice of atoms (so
that a ‘free’ electron can move up or down if its momentum in the z direction is high
enough, but not left or right).

We then expect that the current due to a single electron in a particular direction will
be

I = e

〈
pz
m

Θ

[
p2
z

2m
−W

]〉
=

∫
V d3p

h3

pz〈nε〉
m

Θ

[
p2
z

2m
−W

]
(9.26)

which is the velocity of an electron, times its charge, subject to the constraint it must be
unbound. The current density (electrons per unit area crossing a surface) is

J =
e

h3

∫ ∞
√

2mW
dpz

∫ ∞
−∞

dpxdpy
2pz/m

eβ(ε−µ) − 1
(9.27)

=
2e

mh3

∫ ∞
√

2mW
dpz

∫ ∞
−∞

dpxdpy
pz

z−1eβ((p2x+p2y)/2m+p2z/2m) + 1
(9.28)

=
4πe

mh3β

∫ ∞
√

2mW
dpz

∫ ∞
0

ds
pzs

z−1eβ(s2/2m+p2z/2m) + 1
(9.29)

=
4πe

h3β

∫ ∞
√

2mW
dpz log

(
1 + ze−βp

2
z/2m

)
(9.30)

=
4πme

h3β2

∫ ∞
W

dx log

(
1 + ze−x

)
(9.31)

Note that we did not need to make reference to D(ε) here, since we never converted this
away from the momentum (which are linear in the quantum numbers for the free particles,
and thus do not require a density of states approximation). The leading factor of two
accounts for spin degeneracy in the second equation, we switched to polar coords in the
third equation, and we recognized an easy antiderivative in the fourth equation. We can
write this final integral as

J =
4πme

β2h3

∫ L

0
dx log(1 + ze−x+W ) =

4πme

β2h3

∫ L

0
dx

x

ex−W + 1
=

4πme

β2h3
f2(ze−βW ) (9.32)
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In the limit of low temperature, the quantity (W −µ)/kBT →∞, consistent with the idea
of having to tunnel over some barrier tunneling over a barrier, so we approximate

J ≈ 4πe

h3β

∫ ∞
√

2mW
eβ(p2z/2m−µ)pzdpz =

4πme

β2h3
e−β(µ−W ) (9.33)

Classically, N = V/λ3eβµ, with λ ∼ T−1/2, so there is a temperature dependence of the
classical chemical potential down to zero. We’d expect then

J =
N

V

√
e2kB
2πm

T 1/2e−βW (classical) (9.34)

Quantum mechanically, we found ourselves in the regime of fixed chemical potential, with
µ ≈ εF . Note there are higher order corrections, but this is the general behavior for T → 0.
That means that

J =
4πmek2

B

h3
T 2e−β(εF−W ) (quantum) (9.35)

The existence of the Fermi energy acts as a factor to lower the barrier from W →W − εF ,
so quantum mechanically we expect to see a much greater thermoionic current than would
be expected classically at low temperatures. W − εF is referred to as the work function:
the effective barrier felt by the highest energy electron in the limit as T → 0. Classically,
each electron can have arbitrarily low energy, so all of them would have to tunnel across
the full barrier W . Quantum mechanically, electrons on the Fermi surface have a much
easier time escaping.

9.3.2 The photoelectric effect

Explaining the photoelecctric effect is what won Einstein the nobel prize, but strangely
Pathria doesn’t mention him in this section. The idea here is strongly related to the
contribution made in the context of blackbody radiation: each photon carries a discrete
quanta of energy εω = ~ω, a quantum mechanical postulate that Einstein fully embraced.
The work we did understanding the thermoionic transmission of electrons suggests that
by adding energy in the form of photons would increase the flow of electrons as well. A
photon incident on a metal would thus change

J =
4πe

β2h3
f2(zeβ~ω−βW ) (9.36)

For ω → 0 there is little change in the behavior of the system, with ε′F ≈ εF +~ω. However,
for high frequency photons the imparted energy is significant and causes a significant change
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in the current, since it becomes possible for β(~ω+ εF −W )→∞ even though T is small.
In that limit, we use the scaling of f2(eδ) ≈ δ2/2 as δ →∞, and thus find

J ≈ 2πme

h3
(~ω + εF −W )2 (photoelectric dominated) (9.37)

A similar effect can also be found by applying a constant field in the z direction, lowering the
work function required for barrier crossing. Pathria mentions this briefly and in a somewhat
unclear manner, and we won’t work out his solution. It should be clear, though, that by
applying a potential we’ll induce electron motion by lowering the energetic barrier.

9.4 Summary

The statistics of electrons at low temperatures is dominated by the constraints imposed by
the Pauli exclusion principle: each particle wants to be found in the lowest energy level, but
only one (or g(0) for a degenerate ground state) can actually attain this lowest energy state.
The Pauli exclusion principle that Fermions must satisfy lead to significant differences
between the classical and quantum mechanical predictions, particularly in the susceptibility
for both paramagnets (finite at T → 0) and diamagnets (negative). The photoelectric effect
is also driven by the difference between the Fermi energy and a work function, which are
fundamentally quantum mechanical properties with no classical analogue. Fermi statistics
have important effects in a wide range of material systems.



Chapter 10

The Ising Model (Ch 12-13)

We’ve spent a huge amount of time trying to determine the statistics for a set of N non-
interacting particles, and have seen that some very surprising behavior can be found. In
particular, we saw that there was a phase transition in the Bose Einstein statistics for some
critical temperature, and classically for a solid/gas interface for some critial density. How-
ever, we have yet to see a phase transition in any other context, and in particular we have
never seen any evidence of spontaneous magnetization: a system with a positive magneti-
zation in the absence of an externally applied field. We have seen positive magnetization
in the case of a paramagnet, with H = p2/2m− µ ·B, and in the classical dipole approx-
imation, with H = −µ ·B, but the magnetization M(B, T ) ∝ 〈µ〉 vanishes for B = 0. In
this chapter, we’ll explore the Ising model, which predicts spontaneous magnetization for
simple systems driven by the interactions between particles.

10.1 The Heisenberg Hamiltonian

Paramagnetism was observed for a very simple system, whose spins could align either up or
down with an applied magnetic field. None of those spins interacted with one another, so it
was impossible for the system to support magnetization without an applied field. A simple
generalization of this model would include an interaction between the particles themselves.
That is, we’re actually going to try to work out the statistics of a system of interacting
particles, rather than ideal gasses!

Suppose two quantum particles interact with each other with a potential V (r1, r2) acting as
a perturbation. We recall these two particles must be in symmetric or asymmetric states,

170
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with

ψ± =
1√
2

(
ψ1(r1)ψ2(r2)± ψ2(r1)ψ1(r2)

)
(10.1)

The first order term for the interaction energy between the particles will be

〈Ψ|V (r1, r2)|Ψ〉 =

∫
d3r1d

3r2

(
ψ1(r1)ψ2(r2)± ψ2(r1)ψ1(r2)

)∗
V (r1, r2) (10.2)

×
(
ψ1(r1)ψ2(r2)± ψ2(r1)ψ1(r2)

)
= 2(K ± J) (10.3)

where

K =

∫
d3r1d

3r2|ψ1(r1)|2|ψ2(r2)|2V (r1, r2) (10.4)

J =

∫
d3r1d

3r2ψ
∗
1(r1)ψ2(r1)ψ∗2(r2)ψ1(r2)V (r1, r2) (10.5)

K is the mean energy of the particles given the specific states ψ1 and ψ2, the mean we
would compute if there were no symmetry requirement on the wavefunction. J is an integral
involving the overlap between wavefunctions (called an exchange energy) due solely to the
symmetry requirement. Note that if ψ1(r1) does not significantly overlap with ψ2(r1) at
the same point, the integral will vanish. For an electrostatic interaction between atoms,
V ∝ |r1 − r2|−1 and so J is always positive, which has an important implication: a
pair of particles that are in the symmetric position state have a higher interaction energy
than those in an asymmetric position state. For Fermions with spin 1/2, this means the
singlet state |Ψ〉 = |ψ〉+|00〉 is energetically less favorable than the triplet state |Ψ〉 =
|ψ〉−|1s〉.

The exchange integral J is complicated to work with for free particles, where the wave-
functions ψk(r) ∝ eip·r/~, and contributions from |r1 − r2| → 0 may lead to important
higher-order effects. Instead, we consider a pair of localized particles, pinned to be a fixed
distance a from one another. The wavefunction of each particle will thus be decaying over
some length scale d, and the value of the exchange integral can be tuned by adjusting a
relative to d: If a � d then J is large but finite, while if a � d then J vanishes. The
ground state energy of the pair of particles is thus E0 = K + J for the singlet state and
K − J for the triplet states. This can be conveniently rewritten in terms of what is called
the Heisenberg Exchange Hamiltonian,

ĤH = K +
1

2
J + 2JŜ1 · Ŝ2 (10.6)

ĤH |00〉 = (K + J)|00〉 ĤH |1m〉 = (K − J)|1m〉 (10.7)
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The later equalities arise because 2Ŝ1 · Ŝ2 = Ŝ2
tot− Ŝ2

1− Ŝ2
2 . Fundamentally, this means that

interacting fermions on a lattice will have an effective Hamiltonian that depends solely on
their spin state.

10.2 The Ising model

10.2.1 The Ising Hamiltonian

The Heisenberg Hamiltonian is defined in terms of quantum spin operators, and for spin
1/2 Fermions takes on one of two values. While this is physically correct (in some limit
at any rate), it’s worthwhile to consider an even simpler model: a two state system where
each particle can take on one of two values (up or down), and whose energy depends only
on the product of those values. That is,

Epair = −Js1s2 s1 = ±1 s2 = ±1 (10.8)

Epair = −J s1 = s2 (10.9)

Epair = J s1 = −s2 (10.10)

which has the same features of the original problem: the energy of a state is ±J (ignoring
an unimportant constant) depending on some property of the neighboring particles on the
lattice. Spins that are aligned are energetically favorable (representing the triplet state),
spins that are misaligned are energetically disfavored (representing the singlet state). This
is no longer a quantum mechanical system, but is expected to reflect the essential physics
of a pair of particles separated by a fixed distance. The system is thus reduced to “spins”
that are integers (positive or negative, sometimes called up and down), rather than a
quantum mechanical eigenstates with a Hamiltonian involving quantum operators. This
is convenient for a number of reasons, but is a classical approximation: these “spins” are
an analogy with the quantum mechanical case, with the triplet states incorporating the
aligned cases (| ↑↑〉 and | ↓↓〉) and the singlet state composed solely of the antiparallel
states.

For this classical approximation we can ignore the details of the quantum mechanical
effects and consider a lattice of N particles with only nearest neighbor interactions (that
is, completely neglecting all interactions between particles beyond the length scale a). This
system was originally studied by Ising, with

HIsing = −J
∑
〈ij〉

sisj = −J
∑
nn

sisj (10.11)

The (modern) notation 〈ij〉 and the (older) notation nn are equivalent, and refer to a sum
over i and j that are nearest neighbors. The notations si and σi are both common for the
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Figure 10.1: Schematic diagram of the Ising model in a uniform field, with the energetic
contributions of the site spins (top) and interactions (bottom) indicated. Agreement with
the external field gives an energetic reduction−µB, while disagreement increases the energy
by µB. Likewise, agreement between nearest neighbors decreases the energy by −J while
disagreement causes an increase J .

state of each site having an interaction strength J , with all other interactions having zero
interaction strength. H is minimized if all of the spins are aligned, and maximized if they
are all of alternating sign. Continuing the analogy of the “spin” of a particle corresponding
to the quantum mechanical state, introducing a magnetic field simply adds an energy
−Bµsi for each site i, where µ is the magnetic dipole moment at the site. For a uniform
magnetic field applied to each site, we then have

H = −J
∑
〈ij〉

sisj − µB
∑
i

si (10.12)

with the first term a sum over pairs spin-spin interactions and the second term a sum over
spins. J is taken to be constant for all pairs, which is consistent with particles on a lattice.
This Hamiltonian is often written with µ = 1. since it does not strictly correspond to the
quantum mechanical Bohr magneton. So long as J > 0, the lowest energy state will have
all connected spins aligned with one another, and the pair alignment will match an applied
magnetic field in the energy minimizing state.

Because the Ising model is drawn from analogy rather than fundamental physical princi-
ples, there are many possible generalizations of the Ising model. Common generalizations
include

1. Long range interactions: Next-nearest neighbor or longer range interactions will
change the statistics of the model. The interaction between distant points will some-
times have a lower energetic contribution (e.g. Jnearest > Jnext−nearest), but this is
not required and is not always used.

2. Multiple states at sites: Instead of taking on two values (±1), the state of the sites
can take on multiple values. The energy associated with a pair of particles in state n
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and m are Jnm, some undetermined (and usually not physically defined) function of
the energy associated with two differing states. If the number of states is finite, the
model is called a ‘Potts’ model, and a common choice is Jnm = cos(2π(n −m)/M)
where M is the number of possible states, but this is not required. For an infinite
number of states (M →∞), the model becomes J(θ1θ2) = cos(θ1−θ2) and is referred
to as an X-Y model.

3. Inhomogeneous energy interactions: The interactions between nearest neighbors may
differ between pairs, with Jij 6=constant, in which case there are an ensemble of Ising
models, with each realization of interactions {Jij} an element of the ensemble. To
compute the statistics of the system, one averages over all states in a realization of the
ensemble and all realizations in the ensemble. that is, the partition function is com-
puted by summing over all possible states {si} as well as all possible pair interactions
Jij . These models are called spin-glass models: spin for the ising-like characteristic
and glass because of the disordered interactions between the sites (similar to the
molecular disorder in a pane of glass).

These models can be used to qualitatively describe a huge range of systems of physical,
biological and sociological interest. There is an art in choosing a ‘good’ model for any
particular system, but the underlying idea of having sites that have an ‘interaction’ based
on their ‘states’ is generic enough to be broadly applicable.

10.2.2 Statistical Mechanics for the Ising Model

Knowing a Hamiltonian, we can compute the statistics of the Ising model at thermal
equilibrium. The Ising model treats particles on a lattice, which means we can’t freely add
particles as we can in the grand canonical ensemble. We also aren’t terribly interested in
the fixed energy state of a microcanonical ensemble. Instead, we will focus on the statistics
of Ising spins in thermal equilibrium with a reservoir at temperature T . In this case, we
begin (as one always does):

QN =
∑
states

e−βH =
∑

{si=±1}

e−βH({si}) =
∑

{si=±1}

exp

(
βJ
∑
nn

sisj + βµB
∑
i

si

)
(10.13)

Note that the sign of the exponent is positive due to the fact that energetic contributions
are negative in Eq. 10.12. The compact notation of eq. 10.13 incorporates a sum over all
possible states, which hides some of the complexity of the result. For example,

Q3 =
∑
s1=±1

∑
s2=±1

∑
s3=±1

eβJ(s1s2+s2s3)+βµB(s1+s2+s3) (10.14)

= e2βJ+3βµB + e2βJ−3βµB + e−2βJ+βµB + e−2βJ−βµB + 2eβµB + 2e−βµB



CHAPTER 10. THE ISING MODEL (CH 12-13) 175

which is certainly not easily generalized to N particles for J ≥ 0. However, in the absence
of interactions we have already computed

QJ=0
N =

( ∑
s1=±1

eβµBs1
)
× · · · ×

( ∑
sN=±1

eβµBsN
)

= 2N coshN (βµB) (10.15)

as we saw in eq. 4.126. The calculation is significantly more complicated if J 6= 0, since
we have interactions between neighbors and can’t yet perform the sum. Regardless of our
ability to actually compute the partition function, we still know that we can determine
thermodynamic quantities, such as

U = − 1

β

∂ log(QN )

∂β
βA = − log(QN ) S =

U −A
T

(10.16)

and so on. These quantities will be identical to what we saw in the canonical ensemble.
A less commonly used identity (but one discussed in the context of paramagnetism in
Sec. 4.8.2 is the total magnetization, given by the total magnetic moment of all of the
particles:

〈M(B, T )〉 = µ

〈∑
i

si

〉
=

1

β

∂ log(QN )

∂B
(10.17)

∑
〈ij〉

sisj =
1

β

∂ log(QN )

∂J
(10.18)

The magnetization at B = 0 is referred to the spontaneous magnetization, and we have
previously found M(B = 0, J = 0) classically and quantum mechanically for every nonin-
teracting system we have considered.

10.2.3 Counting spin states

On a perfectly homogeneous lattice, each site will have a fixed number of nearest neighbors
called the coordination number q, which depends on the dimensionality as well as the
lattice geometry. For one dimension, q = 2. For 2 dimensions q = 3 for a hexagonal lattice,
4 on a square lattice, or 6 on a triangular lattice. For three dimensions q = 6 for a simple
cubic lattice, but other geometries will produce a different q. First, note is not unique to
the dimensionality, but rather depends on the details of the lattice. Also, note that the
coordination number refers to the bulk properties of the system (far from the boundaries
of the system), since the number of nearest neighbors at the boundary will be different
(since sites at a boundary have fewer neighbors in total). The number of nearest neighbor
pairs is Nq/2, with the factor of 2 avoiding double counting.

Assuming a homogeneous lattice, we can rewrite the Hamiltonian (which depends on the
individual spin states) in terms of global properties of the system:
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• N+ and N−, the number of particles parallel or antiparallel with the field

• N++, N+−, and N−−, the number of pairs both aligned with the field, one aligned
and one misaligned, and both misaligned with the field.

The first of these accounts for site statistics and the second for pair statistics. The energy
can be re-expressed in terms of these global quantities

H = −J(N++ +N−− −N+−)− µB(N+ −N−) (10.19)

Since the site and pair statistics must be related to one another, we can simplify these
parameters by noting that we have a fixed number of particles N and a fixed number of
neighbor pairs Nedges = Nq/2. Specifically, we can rewrite

N+ +N− = N ⇒ N− = N −N+ (10.20)

qN+ = 2N++ +N+− ⇒ N+− = qN+ − 2N++ (10.21)

qN− = 2N−− +N+− ⇒ N−− = q(N −N+)− (qN+ − 2N++) (10.22)

which allows us to reduce our Hamiltonian to

H = −J
(

4N++ − 2qN+ +
Nq

2

)
− µB(2N+ −N) (10.23)

The partition function will become

QN ≈
N∑

N+=0

qN/2∑
N++=0

g(N+, N++)e−βH(N+,N++) (10.24)

where g(N+, N++) is the statistical weight associated with the particular configuration of
simultaneously N+ up spins and N++ up-up pairs. Note that there are many configurations
that are not physically realizable (e.g. if N+ = 0, then N++ must also be zero, so g(0, x) = 0
for x > 0), so this is a nontrivial task. This approach ignores boundary effects due to the
Nedges ≈ Nq/2 approximation.

10.3 The Mean Field approach to the Ising Model (Pathria
12.5)

10.3.1 The Bragg-Williams approximation

Computing g(N+, N++) is actually quite difficult and it is worth considering a different
approach to determining the thermodynamics of the Ising model. Rather than attempting
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to exactly evaluate the partition function, we will make a mean field approximation for the
state of each site. In quantum statistics, we ignored the canonical partition function and
moved to the grand canonical partition function that was easier to compute. That’s no
longer possible here, and we need to use a new approach.

The reason this system is complicated is because of the interactions between atoms (as
we know we can solve it if J = 0). A simple approximation is to replace the specific
interactions between atoms by typical interactions between particles, a so-called mean-
field approximation. We can define the long range order parameter

m =
1

N

∑
i

si =
N+ −N−

N
(10.25)

The average magnetization is M = µ〈
∑

i si〉 = µN〈m〉, so m represents an average spin
per particle for a specific realization. Pathria uses the notation L = N−1

∑
i si to indicate

the long-range ordering of the system. In the Bragg Williams approximation, we replace
the sum ∑

〈ij〉

sisj ≈
1

2

(∑
〈ij〉

〈m〉si +
∑
〈ij〉

〈m〉sj
)

=
Nq〈m〉

2
m (10.26)

so that the interactions between pairs of spins are replaced by an interaction between a
spin and the average spin of every other particle in the system. This is not an unreasonable
approximation: we simply assume that the interactions between all particles are in some
sense typical, with each particle interacting with the average spin in the system. This is
still an approximation, and ignores possible correlations in the statistics of the system.
This leads to a mean field approximation for the energy,

E = −J
∑
〈ij〉

sisj − µB
∑
i

si (10.27)

= −1

2
NqJ〈m〉m− µBNm (10.28)

This energy is a function of the (unknown) mean magnetization 〈m〉, which we must
determine somehow. We can determine the mean magnetization 〈m〉 of the system by
flipping one (and only one) site’s value, with all other sites presumed to have the mean
magnetization. For example, if we imagine si = −1 and we flip the state to si = +1, there
will be a change in the energy of

∆ε = Efinal − Einitial = −2Jq〈m〉 − 2µB (10.29)

This comes from the fact that if you flip a spin, exactly q interaction edges are changed,
contributing a factor 2s additional energy (with no need to remove doublecounting). If
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∆ε < 0, flipping a spin from a − to a + is energetically favorable, and we expect the
system to be more likely to be found in the spin-up state instead of the spin down state.
If we assume the spin statistics are Boltzmann distributed, we would expect to find

N+

N−
≈ 1 + 〈m〉

1− 〈m〉
= e−β∆ε = e2βJq〈m〉+2βµB (10.30)

It turns out that that log[(1 + 〈m〉)/(1− 〈m〉)]/2 = tanh−1(〈m〉), we finally find from eq.
10.30 that

〈m〉 = tanh[β(Jq〈m〉+ µB)] (10.31)

which provides a self consistent equation for the mean magnetization.

Note that we could have derived the self consistent equation by flipping spins from + to −
as well. We would find the energy change is Efinal − Einitial = −∆ε, and we would make
the same argument that the + state is preferable if the final energy is increased (i.e. if
∆ε is positive). We would then write N+/N− = e−β∆ε to ensure the number of up-spins
increases with decreasing ∆ε, just as before.

10.3.2 Weiss mean field theory

The Bragg-Willaims approximation is one way of approaching the problem (and what is
used in Pathria), but the Mean Field approach does not produce a unique Hamiltonian.
An alternate method for treating spins on the mean field level is the Weiss approach. We
write ∑

〈ij〉

sisj =
∑
〈ij〉

(si − 〈m〉+ 〈m〉)(sj − 〈m〉+ 〈m〉) (10.32)

=
∑
〈ij〉

(δsi + 〈m〉)(δsj + 〈m〉) (10.33)

=
∑
〈ij〉

(
δsiδsj + 〈m〉δsi + δsj〈m〉+ 〈m〉2

)

≈
∑
〈ij〉

(
〈m〉δsi + 〈m〉δsj + 〈m〉2

)
(10.34)

= 〈m〉
∑
〈ij〉

(si + sj − 〈m〉) (10.35)

where s is the mean spin. In the fourth line, we neglected the term involving δsiδsj . This
has a specific and non-perturbative meaning. This approximation does not mean that
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si − 〈m〉 is small (since s = ±1 so a flip in sign will be large), but rather an assumption
that flipped spins are uncorrelated: it may be that some spins are flipped but it is rare
that neighboring spins are flipped simultaneously. That means that while δsi is potentially
large, it is rare that both δsi and δsj are simultaneously large for nearest neighbors.

The Weiss approximation leads to the Hamiltonian

H ≈ 1

2
〈m〉2NJq − 〈m〉Jq

∑
i

si − µB
∑
i

si (10.36)

This expression is useful because instead of having a difficult-to-handle interaction term,
we simply have an effective magnetic field µBeff = µB + Jqs. The partition function for
this system can be quickly evaluated:

QN =
∑

{si=±1}

e−βH = 2N coshN [β(µB + Jq〈m〉)]e−JNq〈m〉2/2 (10.37)

M =
1

β

∂ log(Q)

∂B
= Nµ tanh[β(µB + Jq〈m〉)] ≡ 〈m〉Nµ (10.38)

Here, we have the same result as in the Bragg-Williams case, but were able to compute the
mean field properties of the system using the techniques we’ve already worked out. We can
easily compute expressions for the energy and entropy using this approach as well. Either
approach leads to the same self consistent equation for 〈m〉.

10.3.3 Critical Exponents on the Mean Field level (Pathria 12.5 & 12.7)

In both cases, the mean magnetization can be determined from the self consistent equation,
with 〈m〉 depending on T and B. If B = 0, we have the somewhat simple condition

〈m〉 = tanh

(
Jq

kBT
〈m〉

)
= tanh

(
Tc
T
〈m〉

)
(10.39)

with Tc = Jq/kB. This is a transcendental equation that we can’t solve it exactly except
for when 〈m〉 = 0. We can, however, solve it graphically, and nonzero solutions exist if
Jq/kBT = Tc/T > 1 (that is, T < Tc). The mean field approach predicts that the Ising
model can produce spontaneous magnetization: a non-zero mean magnetization even when
B = 0. This is the first time we’ve seen magnetization in the limit of B → 0, which suggests
that permanent magnetization depends on dipole-dipole interactions.

There are a total of three solutions, 〈m〉 = 0 and 〈m〉 = ±s0, with s0 the nonzero solution
to the transcendental equation for T < Tc. In the absence of a magnetic field there is no
bias in the positive or negative direction and all three solutions exist as a local extremum.
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Figure 10.2: Intersection of x with tanh(Tc/T x) for T > Tc (Red) and T < Tc (blue).
Above Tc there is exactly one solution, below Tc there are three solutions (two of which
are nonzero).

In the limit as T → Tc = Jq/kB from below, the mean magnetization µN〈m〉 � 1 and we
can write

tanh

(
Tc
T
〈m〉

)
≈
(
Tc
T
〈m〉

)
− 1

3

(
Tc
T
〈m〉

)3

(10.40)

Solving the equation 〈m〉 = tanh(Tc/T 〈m〉) in this limit yields

〈m〉 = 0, ±
√

3
T

Tc

√
Tc − T√
Tc

(10.41)

with three zeros. The first is at 〈m〉 = 0 indicating the mean magnetization is zero at
B = 0 as we’ve seen previously. There are also two at non-zero roots (which are real only
when T < Tc) that occur for B = 0, meaning that spontaneous magnetization can for the
Ising model in this mean field approximation. It is convenient to write t = (T − Tc)/Tc as
a nondimensional temperature, and we find

〈m〉 ≈
√

3
T

Tc

√
Tc − T√
Tc

=
√

3(t+ 1)
√
−t ∼ |t|1/2 (10.42)

for t → 0 (or T → Tc). This means 〈m〉 ∼ |t|β with β = 1/2 a critical exponent. These
exponents are an important feature in the theory of phase transitions, and indicate the
behavior of a system near a critical point.
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The energy of the Ising model near the critical point using the mean field approximation
is

U(B = 0) = −1

2
qNJ〈m〉2 ≈

{
3NqJ

2 t t < 0
0 t > 0

(10.43)

The heat capacity can be computed exactly using the mean field approach, with

∂U

∂T
= −NqJ〈m〉∂〈m〉

∂T
(10.44)

where we can use the fact that 〈m〉 = tanh(Tc〈m〉/T ) to write

∂〈m〉
∂T

=
∂

∂T
tanh

(
Tc
T
〈m〉

)
(10.45)

= sech2

(
Tc
T
〈m〉

)(
Tc
T

∂〈m〉
∂T

− Tc
T 2
〈m〉

)
(10.46)

=

(
1− 〈m〉2

)(
Tc
T

∂〈m〉
∂T

− Tc
T 2
〈m〉

)
(10.47)

Here we have used the fact that ∂ tanh(x)/∂x = sech2(x) = 1 − tanh2(x) to simplify the
expressions. Thus, we find that

CV = −NqJ〈m〉2
(

1

T
+

1

(1− 〈m〉)2Tc − T

)
= −NkB

〈m〉2(1− 〈m〉2)

(1 + t)(〈m〉2 + t)
(10.48)

If 〈m〉 = 0, CV = 0 identically since 〈m〉 = 0. However, if 〈m〉 6= 0 at t = 0−, a nonzero heat
capacity will be found. Substituting 〈m〉2 ≈ 3t into the heat capacity gives CV ≈ 3NkB/4
for t < 0. The energy is thus continuous at the critical temperature but has a discontinuous
derivative. This means the Ising model is predicted to have a second order phase transition
on the mean field level, just as the Bose Einstein particles did during condensation.

In the presence of a field (B 6= 0), we can determine the magnetization as a function of the
〈m〉 � 1. Note that this is not the same limit as in eq. 10.41, since 〈m〉 will depend on B
and be nonzero for B 6= 0. We can write

〈m〉 = tanh[β(qJ〈m〉+ µB)] (10.49)

from which we can compute the magnetic susceptibility

χ = lim
B→0

∂M

∂B
= Nµ lim

B→0

∂〈m〉
∂B

(10.50)

Much like in the computation of CV , we can determine

∂〈m〉
∂B

= csch2

(
Tc
T
〈m〉+

µB

kBT

)(
Tc
T

∂〈m〉
∂B

+
µ

kBT

)
(10.51)
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so that

∂〈m〉
∂B

=
µ

kB

1−m2

T − (1−m2)Tc
(10.52)

For T > Tc and as B → 0, we have 〈m〉 = 0, whereas for T < Tc and B → 0 we have
〈m〉 =

√
3T/Tc

√
1− T/Tc. While 〈m〉 = 0 precisely at T = Tc, the different limiting

behaviors have an effect on the susceptibility. In particular, we find

χ =
Nµ2

kb|T − Tc|

{
1
2 T < Tc
1 T > Tc

(10.53)

This relation is a modification of Curie’s law, where χCurie ∝ T−1 without any critical
temperature. Recall that we computed Curie’s law for a noninteracting collection of para-
magnets, with J = 0, meaning that Curie’s law is identical to the Ising model with a
critical temperature Tc = 0. That is, if J = 0 there is no finite critical temperature (as
expected), but interactions shift the divergence in the susceptibility to a finite Tc if we
include interactions.

Another quantity of interest is the magnetization as a function of the field.

βµB = tanh−1(〈m〉)− βqJ〈m〉 ≈ 〈m〉+
〈m〉3

3
− βqJ〈m〉 (10.54)

µB ≈ kB(T − Tc)〈m〉+
kBT 〈m〉3

3
(10.55)

where Tc = qJ/kB as before. Note that the term linear in 〈m〉 is multiplied by T − Tc,
meaning that if T = Tc only the cubic term contributes. This implies that M(T = Tc) ∼
B1/3 for weak fields, with the magnetization M = Nµ〈m〉. For t > 0 the magnetization
will be nonzero for B 6= 0, since even if 〈m〉 is small the spins will still partially align with
the external field.

These critical exponents can be gathered together to define the critical behavior of the
system for small t. The exponents have standardized variable symbols, with

CV ∼
{
|t|−α T = T+

c

|t|−α′ T = T−c
(10.56)

m ∼ tβ (10.57)

χ ∼
{
|t|−γ T = T+

c

|t|−γ′ T = T−c
(10.58)

m ∼ B1/δ (10.59)

with α = α′ = 0, β = 1/2, γ = γ′ = 1, and δ = 3. These critical exponents give information
about how the system approaches a phase transition. They can be calculated for any
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details of the Ising model, and models that have the same critical exponents respond to
temperature or external fields in identical ways. Note that there are two additional critical
exponents not discussed here (one will be described below), and that the critical exponents
are inter-related via the Ginzburg criterion (which we will not discussed).

10.3.4 Universality Classes (Pathria 12.2) - Being skipped

An example of another system in the Ising Universality class is the Van der Waals (VdW)
gas, a simple model of a gas that incorporates excluded volume and intermolecular attrac-
tion, with

p =
NkBT

V −Nb
+
N2a

V 2
(10.60)

where b is the volume of a single particle and a is an interaction energy. We’ll briefly sketch
the derivation of the critical exponents for the VdW gas, but it is worth emphasizing that
this system bears no obvious resemblance to the Ising model:

• The particles in the VdW gas are mobile, unlike the fixed Ising sites

• The interactions in the VdW gas are all-to-all, not nearest neighbors

• The particles are not constrained to be in one of two states in the gas.

• There is no applied magnetic field in the VdW gas, but rather an external pressure
(note that this means we’re in the Gibbs Ensemble with pressure an independent
variable and V the dependent variable.

Despite the fact that the physics differs significantly, the fact that the free energy has
qualitative features in common is sufficient to produce the same scaling laws. The VdW
gas has been well studied, and It has been show that we can non-dimensionalize the VdW
equation of state by defining the nondimensional pressure, volume, and temperature

p̄ =
27b2p

a
− 1 v̄ =

3bV

N
− 1 t =

27BkBT

8a
− 1 (10.61)

After some tedious algebra, we can write the equation of state as can be rewritten

3v̄3 + 8(p̄− t)v̄2 + (7p̄− 16t)v̄ + 2(p̄− 4t) = 0 (10.62)

For v̄ � 1 near the critical point, it must be that p̄ ≈ 4t near the critical point (else the
term independent of v̄ would not vanish). Then near the critical point we can evaluate the
equation of state at this point yields three possible roots for the nondimensional volume:
=̄0 or v̄ = ±2

√
−t (remember that β = 1/2 in the Ising model). The latter roots are valid

only when we have t < 0, same as with the Ising model. The equivalent of the susceptibility
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is ∂v̄/∂p̄, which we can extract by implicit differentiation of the equation of state, with
∂v̄/∂p̄ ≈ 2/(7p̄ + 9v̄2 − 16t). In the limit of T → Tc we have p̄ ∝ t and v̄2 ∝ t, so the
susceptibility is ∂v̄/∂p̄ ∝ t−1. Finally, if t = 0 and p̄� 1 we find the leading order behavior
of p̄ ≈ −3v̄3/2 from the equation of state in eq. 10.62. That means

v̄ ∼ tβ β =
1

2
(10.63)

∂v̄

∂p̄
∼ |t|γ γ = −1 (10.64)

v̄ ∼ p̄1/δ δ = 3 (10.65)

all of which are identical to the Ising critical exponents (we didn’t compute CV , which is
more tedious). The Lattice gas (particles randomly assigned to points on a lattice) are also
in the same universality class as the Ising model.

10.4 Transfer Matrices and exact solutions (Pathria 13.2)

We’ve determined the predicted mean field behavior, which indicates that below a critical
temperature T = Tc = Jq/kB spontaneous magnetization will occur. But it’s important
to remember that the mean field approach was an approximation, and not exact. So, is it
correct? It turns out that the Ising model in 1 and 2 dimensions are exactly solvable, so
we can check!

To do so, it’s convenient to define what’s called a transfer matrix, which we can see easily
by considering a 4 spin 1 dimensional Ising model. We define the pairwise energy

E(si, si+1) = −Jsisi+1 −
1

2
µB(si + si+1) (10.66)

H = −1

2
µB(s1 + sN ) +

∑
i

E(si, si+1) (10.67)

This specific form is due to the fact that the nearest neighbor interactions are between si
and si+1, and won’t work in two dimensions as written. It turns out that the simple pair
interaction E(si, si+1), which takes on only four values, leads to a very simple expression
for the partition function. To gain insight into why, recall that we were previously able to
write the partition function

Z = Tr(e−βH) (10.68)

in quantum statistical mechanics. That was convenient because the density operator was
diagonal in the energy eigenbasis. The Ising model does not have a particularly obvious
basis that we can use to perform the trace, so it’s not obvious how to use this. However,
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we can see that the constrained partition function Z(s1, sN ) (whose spins at the endpoint
are s1 and sN and are not summed over) can be written

Z(s1, sN ) = eβµB(s1+sN )/2
∑
s2=±1

· · ·
∑

sN=±1

e−βE(s1,s2)−βE(s2,s3)−···−βE(sN−1,sN )(10.69)

= eβµB(s1+sN )/2
∑
s2=±1

e−βE(s1,s2)
∑
s3=±1

e−βE(s2,s3)
∑
s4=±1

e−βE(s3,s4) · · ·

= eβµB(s1+sN )/2

(
TN−1

)
s1,sN

(10.70)

where

T =

(
e−βE(1,1) e−βE(1,−1)

e−βE(−1,1) e−βE(−1,−1)

)
(10.71)

(10.72)

is referred to a transfer matrix. Each transfer matrix completely accounts for the four
possible states that any pair of sites can have, and plays a role similar to the quantum
mechanical transfer matrix in finite square well calculations: each multiplication of the
matrices transfers from one domain to the next. Dirac notation can still be used here,
with

Q[s1, sN ] = eβµB(s1+sN )/2
∑

s2,...,sN−1

〈s1|T|s2〉〈s2|T|s3〉 · · · 〈sN−1|T|sN 〉 (10.73)

We can evaluate the partition function exactly by diagonalizing T, with

T = PTΛP QN (s1, sN ) = (PTΛN−1P)s1,sN (10.74)

We can use this to finally determine the exact partition function

QN =
∑
s1=±1

∑
sN=±1

eβµB(s1+sN )/2QN (s1, sN ) = vTPTΛN−1Pv (10.75)

with

v(s) =

(
e+βµB/2

e−βµB/2

)
(10.76)

This is exact, but somewhat tedious to compute due to the boundary terms which we
expect will be unimportant in the limit of N � 1. A common method for computing
the partition function is to prescribe periodic boundary conditions, where an additional
virtual bond between s1 and sN is inserted. This will produce an inextensive change in the
free energy which can be neglected for N → ∞. For the periodic boundaries, we simply
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must insert an additional factor of T in the calculation, and it is straightforward to show
that

QN = Tr(TN ) (10.77)

removing any need for the endpoint terms described by vv. Switching to periodic boundary
conditions makes the problem somewhat simpler, because we no longer need to determine
the eigenvectors of the matrix T in the diagonalization, we only need the eigenvectors. Note
that this methodology depends only on the fact that there are discrete nearest neighbor
interactions. The transfer between sites must be memoryless, a requirement shared by
Markov chains. In a Markov process, the lack of memory means the state at any time can
be written as the previous state times a matrix summarizing the probability of moving
between different states. Here, the transfer matrix is not normalized and thus is not a
probability matrix, but the mathematics is similar. Constructing a transfer matrix that
takes all possible interactions into account may be larger (e.g. a

√
N ×

√
N matrix for

the 2-D Ising model, which we will not discuss), but is always possible. It’s only useful,
of course, if one can extract useful information from the transfer matrix. We can do that
now.

It’s tedious but straightforward to diagonalize the matrix

T =

(
eβJ+βµB e−βJ

e−βJ eβJ−βµB

)
(10.78)

λ± = eβJ
[

cosh(βµB)±
√

sinh2(βµB) + e−4βJ

]
(10.79)

so that the partition function for a 1D ising model with periodic boundary conditions
is

Qperiodic = Tr(TN ) = λN+ + λN− ≈ λN+ (10.80)

in the limit of N →∞, since λ+ > λ−. We then have

M(B, T ) =
1

β

∂ log(Q)

∂B
=

Nµ sinh(βµB)√
sinh2(βµB) + e−4βJ

(10.81)

Now, there’s a bit of a problem here... M(0, T ) = 0 for all T > 0. Spontaneous magne-
tization does not occur for one dimensional ising systems (above absolute zero, anyway),
despite the prediction of the mean field approach! There is actually no critical behavior in
the 1D Ising model, despite all of the work that we put into the mean field theory.

It turns out that we can in fact determine the behavior of the ising model exactly in two
dimensions in the absence of a field. We can do this by defining transfer matrices, as we
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just discussed. Instead of having a 2 × 2 matrix, the Transfer Matrices must incorporate
the statistics of each row simultaneously. This means the transfer matrices must be n× n
where n =

√
N is the number of rows (or columns) of the square matrix. Onsager managed

to show that the 2D Ising model does exhibit a second order phase transition at a finite
critical temperature Tc = 4J/kB (as is predicted by the mean field theory). Despite that
qualitative success, the quantitative features of the mean field approach are quantitatively
incorrect:

α = α′ = 0 (correct) (10.82)

β =
1

8
6= 1

2
(10.83)

γ = γ′ =
7

4
6= 1 (10.84)

We’ve seen that the mean field approach didn’t recover the exact results. The failure of the
mean field approximation arises from the fact that fluctuations are ignored on the mean
field level, which are not negligible. It turns out that in greater than four dimensions,
these fluctuations can be neglected and the mean field theory is exact. This arises from
the Ginzburg Criterion, which requires that 〈m〉2 � 〈(m−〈m〉)2〉 (that is, fluctuations are
significantly smaller than the mean magnetization). This can be rewritten as 〈m〉2 � χkBT
(the thermal energy multiplied by the response of the system to a perturbation), which can
be calculated on the mean field to scale as |t|(d−4)/2. If d < 4, the entire system is consumed
by fluctuations near the critical point, and the mean field approach will necessarily fail.
If d > 4, fluctuations vanish near the critical point, and the mean field methods will be
appropriate.

10.5 Landau’s Phenomenological free energy (Pathria 12.9)

10.5.1 Phase Transitions

The reason that two systems can have the same universality class is that the shape of their
free energies are similar near the critical points. In the Ising and VdW cases, we did not
work out the free energies explicitly, but both systems can be used by studying what’s
referred to as Landau’s phenomenological free energy. For any system we have an order
parameter (sometimes called a reaction coordinate): an observable that we measure as we
vary the other parameters. The mean magnetization m(t) the order parameter for the Ising
model. In the absence of an external field, the free energy ψ[m(t), t] is a function solely of
the magnetization and temperature, and near the critical point we assume m � 1. This
means we can expand

ψ ∼ ψ0(t) + r(t)m2 + s(t)m4 + · · · (10.85)
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where the first and third order terms must vanish, because the system is invariant under
the exchange m→ −m in the absence of an external field. We can minimize the free energy
to find that

∂ψ

∂m
= r(t)m+ 2s(t)m3 = 0 (10.86)

which means that m = 0 or m = ±
√
−r(0)/2s(0) at equilibrium. This is not an imme-

diately useful result since we do not know the functional form of r or s, but importantly
it means that the non-trivial solutions exist only if r has the opposite sign of s. That is,
this free energy will exhibit spontaneous magnetization if r(t) changes sign when t = 0 (i.e.
s(t) is an odd function of t) while s(t) does not change sign (i.e. s(t) is an even function of
t). In order to use this phenomenological free energy to study the Ising model, it is useful
to take a simple anzatz that satisfies the known critical exponent of β = 1/2, with the
simplest form r(t) = rt and s(t) = s constant. This ensures that m(t) ∼ −

√
t, but is not

the only choice one could make and is not justified by anything more than its simplicity.
Note that the fourth order term was necessary to prevent the system from blowing up to
m → ∞ once r(t) changed signs, which is generally true for any free energy model: the
free energy must be large for extreme values of the order parameter, else the system will
diverge.

In the Ising model, and external field can be introduced by adding an additional term to
the free energy:

ψ(B, t) = ψ0(t) +
mB

kBT
+ rtm2(B, t) + sm4(B, t) (10.87)

entering the free energy coupled to the magnetization linearly, with no additional terms
in the energy. This is because kBT∂ψ/∂B = m is how the magnetization is computed,
and if B affected any other terms in the free energy this relationship would not hold true.
Defining h = B/kBT , we have

ψ ∼ −hm+ q(t) + r(t)m2 + s(t)m4 (10.88)

∂ψ

∂m
= 0 = −h+ 2rtm+ 4sm3 (10.89)

χ =
∂2ψ

∂h2
=
∂m

∂h
=

(
∂h

∂m

)−1

=
1

2rt+ 12sm2
(10.90)

which, for m ∼ t1/2, scales as t−1 on either side of the transition but with different coef-
ficients. Of course, we also find that h ∼ m3 at t = 0 as well. We’ve thus recovered the
expected scaling laws using a very simple expansion on the free energy, choosing the scaling
of the free parameters to satisfy the known scaling laws (except for the heat capacity, which
is left as an exersise).
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10.5.2 First order transitions

Landau theory adequately describes second order phase transitions, since nontrivial solu-
tions suddenly appear when t < 0 and disappear when t > 0, with those nontrivial solutions
approaching m(t) → 0 as t → 0− (and of course is =0 at t = 0+). The interpretation of
the second order transition is clear for a symmetric free energy: the nontrivial roots of the
polynomial transition from imaginary to real as t passes through 0 from above, converging
on zero at t = 0. A second order transition has a continuous change in the thermodynamic
variables, while a first order change has a discontinuity in the thermodynamic variables.
This is where the term ‘first order’ comes from: the first (or second) derivative of the free
energy is discontinuous.

First order transitions require two elements: first that non-trivial solutions suddenly emerge,
and second that they do not pass through 0. ψ ∼ ψ0 + hm + rtm2 + sm4 + · · ·. A linear
term will not be able to produce such a root if r(t) vanishes at t = 0: while a solution
m = |h/4s|1/3 or m = −|h/4s|1/3 (depending on the sign of h) will exist, the solution
m = 0 is no longer a solution, so a discontinuous change in the magnetization will not
occur. That is not true for a cubic term in the free energy: if ψ = ψ0 + rtm2 +wm3 + sm4,
m = 0 is always a free energy minimum and there will be two additional roots (m =
−3w/8s ±

√
(3w/8s)2 − rt/2s) which transition from imaginary to real and nonzero at

some finite value of t. This means that at some critical temperature there will be a jump
from the solution m = 0 to a real-valued root m 6= 0, a first order transition.

10.5.3 Correlations in Landau Theory

A final example of the power of Landau’s theory is to show that it can also make pre-
dictions about correlation lengths: the length scale over which the state of one particle
can affect other particles. The original expression for the free energy has a homogeneous
magnetization for the system, m, which does not vary spatially. The Landau theory can be
modified to incorporate spatial variations in the same spirit of the original approximation.
Assuming all interactions are purely local, variations in the free energy should enter into
the free energy as some function of ∇m(r) (essentially, a nearest neighbor interaction).
Since the sign of m still can’t enter into the free energy (since there’s no preferred direc-
tion), the simplest assumption is that fluctuations will enter the free energy as |∇m|2. In
this case, the free energy looks like

ψ = ψ0 +

∫
ddr

(
c|∇m(r)|2 + r1tm

2(r) + s0m
4(r)

)
(10.91)

ψ[m(r)] is now a functional of the magnetizaton m. To compute the correlation function,
we can perturb a single point by adding a field B(x) = bδ(x) and computing its affect on
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other points in the system. This leads to the perturbed free energy

ψb = ψ0

∫
ddr

(
c|∇m|2 + r1tm

2(r) + s0m
4(r) + bδ(r)m(r)

)
(10.92)

We can take the functional derivative of the free energy to find the equilibrium value of
m(r). You did this without the inclusion of a derivative in a previous homework set, and
we can compute the variational derivative of the gradient squared as

δ
∫
dd|∇f(r)|2

δf(r′)
= lim

ε→0

δ
∫
dd[|∇(f(r) + εδ(r− r′))|2 − |∇f(r)|2]

ε
(10.93)

= 2

∫
ddr(∇f(r)) · (∇δ(r− r′)) = −2∇2f(r′) (10.94)

This leads to the equilibrium magnetization given a perturbation of strength b at the origin
satisfying [

− c∇2 + rt+ 2sm2
b(r)

]
mb(r) +

b

2
δ(r) = 0 (10.95)

This equation is the same as Pathria 12.11.21 (up to unknown constants), but using a
very different route to get there. Assuming the perturbation is small, we can neglect the
m2(r) term and findthe magnetization at a point r due to a field at some other point r = 0
becomes

(∇2 − rt)m(r) = c′δ(r) − (k2 + rt)m̂(k) ∝ c′ m(x) =

∫
ddk

(2π)d
eik·r

k2 + rt
(10.96)

where the second equality is a Fourier transform and the third the final solution. We
see immediately by making a change of variables that the functional dependence of r will
always be combined with a term looking like r/

√
t, so the correlation length (the range over

which particles a distance |r| away from the perturbation feel its effect) must satisfy

λ = |t|−ν ν =
1

2
(10.97)

nu is one of the critical exponents that are usually computed but not discussed specifically
for the Ising model in Sec. ??. Pathria shows this is specifically

m(r) ∼ e−|r|/λ

|r|(d−1)/2
ξ ∼ |t|−1/2 (10.98)

for |r| → ∞, showing there is an exponential decay in the correlation length. An important
aspect of this correlation length is that it diverges as t→ 0. That is what we’ve discussed
extensively in previous discussions of criticality: in the limit as t → 0 a perturbation at
some point in the system can have an effect infinitely far away, so fluctuations cannot be
localized. All length scales start to play a role near a critical point.


