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Abstract – We propose a non-metric measure of the “closeness” felt between two nodes in an
undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-
valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative
network in mind, the approach can be of use in a variety of artificial and real-world networks.
We are able to distinguish between network topologies that standard distance metrics view as
identical, and use our measure to study some simple analytically tractable networks. We show
how this might be used to look at asymmetry in authorship networks such as those that inspired
the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach
to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant
improvement using our method over a baseline.

Copyright c© EPLA, 2011

A variety of complex natural and artificial systems can
be viewed as a network [1], with a set of nodes representing
objects and a set of edges connecting these nodes repre-
senting interactions between objects. Such systems include
protein [2] or metabolic [3,4] networks, computer networks
and the world wide web [5,6], disease propagation in
populations [7,8], and networks of human [7,9] or other
animal [10,11] interactions. While much of the study of
networks generally involves characterizing both its inter-
nal structure [3,8,9] and the propagation of dynamical
processes in it [1,12], a basic question that continues to be
of interest is that of characterizing “closeness” or “simi-
larity” between nodes in such networks. Various metrics
of the distance between nodes in an undirected network
have been developed including the integer distance [13]
(identical to the classic Erdös numbers [14] which measure
the authorship distance to the famous Hungarian mathe-
matician), resistance distance [10,15,16], or a variety of
measures determined from mutual nearest neighbors of
nodes [17]. These approaches often have both a topological
(incorporating the nearest-neighbor or global topology of
the network) and geometric (satisfying the definition of a
distance metric) character to them, although non-metric
measures on undirected networks can be determined as
well [17–19], such as the transition probabilities or hitting
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times for a random walk. In this paper, we develop a
framework for determining the “closeness” between nodes
in a weighted network by developing a real-valued Gener-
alized Erdös Numbers (GENs) in the context of a social
network. The GENs are inherently topological entities
that incorporates nonlocal information about connectiv-
ity and are of use beyond the collaborative networks in
which they were developed. The GENs are asymmetric
(i.e. Eij �=Eji) even if the underlying adjacency matrix
is symmetric, thus failing to satisfy the requirements of a
metric. Using analytically tractable symmetric networks,
we show that the GENs can distinguish between topolo-
gies that are identical when viewed through the lens of
common distance metrics [13,15,17]. We develop a basic
predictor for a small subset of the NetFlix data [20]
to demonstrate the utility of the GENs in real-world
networks, and find significant improvement over a baseline
prediction.
In order to develop a natural measure of the “closeness”

between two nodes in a collaborative network, we consider
one of the simplest possible connected graphs: a linear
network of exactly three nodes (diagrammed in fig. 1(a)).
With Erdös indexed as 0, we define his closeness to himself
as E00 = 0, as is the case in all distance metrics [13,15].
For a node B (Bob, say) directly connected to exactly one
other node (Alice in this case), we define the closeness
felt by Bob towards Erdös as E0B =E0A+w

−1
AB , with

wAB the weight of the edge joining Alice and Bob. The
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Fig. 1: (Colour on-line) (a) A simple linear author network.
Bob has published only with Alice, so E0B =E0A+w

−1
0A .

The competition between the connections with Erdös and
leads to E0A given in (1). (b) Schematic of the relationship
between weights and GENs. Smaller sizes denote closeness to
Erdös (large spheres implying large E0i). Red coloring denotes
strong interactions, while blue denotes weak interactions. E0A
increases as wAB increases. (c) A simple cycle for two authors
weakly connected to Erdös but strongly connected to one
another.

determination of E0A is more ambiguous, since Alice is
connected to two nodes. If we were to use a distance
metric [13,15–17] to determine the closeness between
Erdös and Alice, we would find E0A =w

−1
0A , independent

of the fact that Alice is connected to Bob. This is a
sensible result when considering distances, where closeness
is determined from the (fixed) locations of nodes, and is
thus independent of their connectivity. However, there are
a variety of settings where Alice’s interactions with one
neighbor depends on her connectivity to the rest of the
network, with collaborative networks being one example.
In most sociological settings, Alice has a finite amount of
time with which she can spend with her friends (Erdös
and Bob), which must be shared between the two [19].
In a random walk the transition probability [18] from
node i to node j depends on the degree of node i, and
thus i’s total connectivity. In cases where a finite resource
must be allocated between neighbors, we expect that the
closeness felt from node i towards node j will depend on
the connectivity of i, and this closeness can therefore not
be captured by a distance metric.
To incorporate the effect of multiple connections

between Alice and the other nodes, we assume that the
closeness Alice feels to Erdös is a function of the closeness
felt by all other nodes connected to Alice towards Erdös.
In particular, we expect E0A = f({E0i+w−1Ai }), where
E0i+w

−1
Ai would be the closeness node i feels to Erdös

in the absence of all other edges. We expect I) that
the unknown functional form of f should penalize large
values of E0i+w

−1
Ai (i.e. that nodes that feel close to

Erdös contribute more than nodes that feel far from
Erdös when computing E0A), and II) that connections

with high weight have a higher contribution than those
of low weights. These expectations are diagrammed
schematically in fig. 1(b), and suggest the use of a
weighted harmonic mean of the form

1

E0A
=

1

w0A+wAB

(
w0A

E00+w
−1
0A

+
wAB

E0B +w
−1
AB

)
, (1)

where the necessity of using the scaled weight wAi/(wA0+
wAB) will be addressed below. We note that although (1)
is the simplest and most natural functional form that
satisfies the constraints above, other forms are certainly
possible. Furthermore, the centrality of Erdös in a network
may be replaced by that of any node i, so that we can
generalize (1) to define the closeness felt by node j towards
node i as

1

Eij
=
1

Wj

∑
l∈Cj

wjl

Eil+w
−1
jl

, (2)

where wjl is the weight of the edge between j and l, Cj is
the set of nodes directly connected to node j, and Wj =∑
l wjl is the strength of node j. The reason for scaled

weights wjl/Wj becomes clearer in (2): using unscaled
weights wjl would imply that node j would have a low
Generalized Erdös Number Eij (i.e. feel very close to node
i) by having many connections (large Wj), even if these
connections led to nodes with high Erdös numbers Eil. We
note that if wjl = εδjl0 for some l0, then Ejl0 ∼ ε−1→∞
as ε→ 0, so as a node with vanishing weight for its only
connection to the network will have a diverging GEN as
it becomes “disconnected”.
To illuminate some aspects of the GENs we first consider

a simple, three-node cycle shown in fig. 1(c), where two
strongly connected nodes with weight wAB =w� 1 are
weakly connected to a third node (indexed 0). Solving (2)
for the GENs Eij for this simple network yields E0A =
E0B ∼ (1+

√
5)/2+O(w−1)≈ 1.62 for large w, showing

that the two nodes move away from the third (E0A
and E0B increase) as their connection strengthens, with
E0A =E0B = 1 for w= 0. Nodes A and B move towards
each other as w increases, as can be seen by computing
EAB =EBA ∼w−1+O(w−2). The third node has a low
strength and is closer to the other nodes than they are
to it (EA0 =EB0 ∼

√
2+O(w−1)≈ 1.41). Figure 1(c) thus

displays the inherent asymmetry in the Erdös numbers
(EA0 �=E0A), indicating that Eij is not a distance metric.
The GENs differ from common distance metrics in a

number of ways, as can be seen by examining some more
complex networks. In a fully connected network of N +1
nodes of constant interaction strength wij =w(1− δij),
each node has an identical Erdös number (E0i =E for
i �= 0), with the equivalent of (2) given by

wN

E
=w2+

w2(N − 1)
wE+1

, (3)

yielding E =
√
N/w. As the strength w of each connec-

tion between nodes increases, the Erdös number of all
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Fig. 2: (Colour on-line) The GENs computed for the open
(filled symbols) and closed (open symbols) linear networks,
along with the theoretical scaling of E0i = i(i+4)/3 (solid red
line). Insets schematically diagram the open and closed linear
networks, as well as a tree network with m= 3 connections per
node and length L= 3 (discussed in the text).

nodes decrease, since all nodes become closer to each
other as well as to Erdös. However, as the number of
nodes increases, with edges added to keep the network
fully connected, the importance of an individual edge is
lessened and all nodes will feel less close to one another.
This is in contrast with other measures such as the resis-
tance distance, which decreases as new nodes are added
or integer distance, which remains constant independent
of N .
We next consider generalizations of the simple networks

(fig. 1) to extended linear networks and a cycle-free tree
(fig. 2) where each node is connected to exactly m nodes,
except for the endpoints. For the open networks with
m� 2, the resistance distance between any two points
is given by the integer distance, Rij =Dij/w= |i− j|/w,
since there are no cycles. The GEN between a node i and
the base of a branch (indexed 0) satisfies

wm

E0i
=

w2

wE0,i−1+1
+
w2(m− 1)
wE0,i+1+1

(4)

with the boundary conditions E00 = 0 and E0L =E0,L−1+
w−1. The closed linear network can be studied using
the same difference equation, with the boundary condi-
tions E00 =E0,L+1 = 0 after insertion of a virtual node.
E0i(w) =E0i(w= 1)/w for constant interaction strength
w, so the weights can be factored out, and are ignored
below. While the difference equations are not exactly solv-
able, if m= 2 we can see that E0i = i(i+4)/3 is a solution
that satisfies (4) and the boundary condition E00 = 0. For
i≈L, deviations from this predicted scaling are expected
to occur due to the boundary condition at the distant ends.
Interestingly, the quadratic scaling E0i ∼ i2 for distant
nodes matches the time for particle diffusion from node
0 to i, taking time τ0i ∼ i2. For tree networks with large
m (inset of fig. 2), we find that E0i =E0,i−1+(m− 1)i

asymptotically satisfies the difference equation with the
boundary condition E00 = 0. The tree network produces
an exponential growth with i for large m, rather than the
quadratic growth seen for m= 2, clearly showing that the
GENs are able to distinguish between the global topology
of these very different networks more accurately than a
resistance distance approach.
In order to determine the numerical values of the

GENs for this linear network (with w= 1), we deter-

mine an iterative solution for E0i, with 2/E
(t)
0i =

(E
(t−1)
0,i−1 +1)

−1+(E(t−1)0,i+1 +1)
−1 and E(0)0i = i(i+4)/3. E

(t)
0i

is computed until ε(t) =maxj |E(t)0i −E(t−1)0,i |< 0.01. The
resulting numerical solutions to the GENs are shown
in fig. 2, with the solid red line denoting the predicted
quadratic growth, E0i = i(i+4)/3. The predicted scaling
agrees well with the numerical results1, with deviations
occurring near the i=N endpoint for the open network
and near the i=N/2 midpoint for the closed network.
Moving away from simple, symmetric networks, we now

examine the structure of more complex networks using
the coauthorship network [21] of Paul Erdös to see the
differences between GENs and integer distance between
nodes. The 17,724 edges in the (unweighted, with wij = 0
or 1) network incorporate all coauthorships with Erdös
as well as coauthorships between authors with integer
Erdös number 1 and those with integer Erdös number
� 2, with a total of N = 9778 authors. Coauthorships
between a pair of mathematicians both of whom have
integer Erdös number 2 (i.e. edges between non-neighbors
of Erdös) are omitted in this network. In fig. 3, we show
the GENs only for coauthors direct coauthors of Erdös
who all have integer Erdös number 1, and see both the
closeness felt by Erdös towards his coauthors (Ei0, red
squares) and the closeness felt by his coauthors towards
him (E0i, blue circles). Mathematicians who have very
low degree (Wi ∼ 1) feel very close to Erdös, since they
are connected directly to him and few other nodes. In
particular, a coauthor of Erdös withWi = 1 will necessarily
have E0i = 1. Nodes with high degree (Wi� 1) feel less
close to Erdös, because their attention is divided between
a large number of nodes, as was the case in our artificial
networks. On the other hand, the closeness felt by Erdös
towards his coathors has the opposite behavior: Erdös is
less close to nodes with low degree, because his attention
is divided between many coauthors, but is closer to nodes
with high degree because of the many paths between
him and these coauthors. The asymmetry in the GENs,
with E0i �=Ei0, would not be discernible using a distance
metric such as the integer distance between nodes, which
is necessarily symmetric. Quantitatively, we see that the
closeness felt towards Erdös scales as E0i ∼W 0.34i and
the closeness felt by Erdös scales as Ei0 ∼W−0.45i ; the
particular exponents in the growth or decay of the GENs
depends strongly on the global topology of the network,

1The numerical results for the tree network with m� 5 also agree
with the theoretically predicted exponential growth.
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Closeness felt by Erdos

Closeness felt towards Erdos

Ei0~ Wi
-0.45

E0i~ Wi
0.34

Fig. 3: (Colour on-line) The GENs for the network of mathe-
matical coauthors of Paul Erdös. Blue circles show the close-
ness felt by coauthors of Paul Erdös towards him, and red
squares show the closeness felt by Erdös towards his coauthors.
Authors who have low degree (who have published few papers)
feel much closer to Erdös than those with hig h degree (see
the text). Alternatively, Erdös feels closer to those coauthors
with high degree, who have worked not only with Erdös, but
also with other authors to which Erdös feels close. The best-
fit nonlinear scalings of E0i ∼W 0.34

i and Ei0 ∼W−0.45
i have a

power law growth or decay whose exponent will depend on the
global topology of the network, and the variations of the GENs
for authors with the same degree is due to local variations in
the network connectivity.

and are not expected to be universal. There is a crossover
when E0i ∼Ei0, and is expected since a virtual author
connected to all nodes in the network (with Wi =N) will
not feel close to any node, including Erdös, while Erdös
will feel very close to this virtual node due to the large
number of paths. We would expect for a tree-like network
(where there is a single path between Erdös and any other
author) that the transition with E0i =Ei0 would occur for
nodes having the same degree as Erdös: Wi =W0 = 511 in
contrast with the observed cross-over for the real network
that occurs for Wi = 465.
Having analyzed both idealized and real networks using

GENs, we now show how they can be used as a basis for
deducing higher-order information about the structure of
networks. As an example, we consider the data provided
for the NetFlix prize [20], a competition to improve
algorithms for the prediction of future movie ratings based
on previous ratings. Here, we use the GENs as a means to
characterize an interaction “energy” between nodes when

predicting the rating user i gives to movie l, p
(l)
i , using

the Boltzmann weighted average taken from statistical
mechanics,

p
(l)
i =

∑
j∈Sl
r
(l)
j e

−w̄βEij
/∑
j∈Sl
e−w̄βEij , (5)

with w̄ the average weight of each edge (see below). β is a
free parameter (an inverse temperature), describing how
important distant nodes are in determining the predicted

Table 1: Parameters used in the NetFlix analysis. N is the
number of users in the dataset, and k is the number of users
for whom predictions were made. The number of nodes with
ni � nmin = 30 out of the k considered are shown, as well as
the average percent improvement for all nodes with at least 30
movies seen.

Case N k α No. with n> 30 κβ=2(nmin = 30)
1 3000 553 2 304 (55%) 3.56%
2 3000 557 4 302 (54%) 4.71%
3 3000 1297 8 782 (60%) 3.35%
4 6000 368 8 188 (51%) 4.53%

rating. w̄βEij is the ‘interaction energy’ between users
i and j, determining which nodes are important to the
average and which are not and assigning a lower weight to
the latter. In order to compute the Erdös numbers in (5),
we need to generate a weighted graph use the NetFlix
data.
While we could represent the NetFlix data as a bipartite

network [19,22], where the users and movies form sets of
disjoint nodes, we instead use the movie ratings (an integer
between 1 and 5) to determine a weight between two users,
using the simple power law of the form

wij =
∑
l∈Mij

(5− |∆r(l)ij |)α (6)

with ∆r
(l)
ij = r

(l)
i − r(l)j , r(l)i the rating user i gave to movie

l (0� |∆r(l)ij |� 4), and Mij is the set of movies that both
user i and j have rated (wij = 0 if i and j have rated
no movies in common). If users i and j disagree on all
movies (i.e. one rates a 5 while the other rates a 1),
the weight between them is wij = |Mij |, while perfect
agreement (both rating 1’s or 5’s) gives a weight wij =
5α× |Mij |. Implicit in this definition is that users who seek
out the same movies have more similar tastes than those
who do not (even if they do not agree), and that users
who agree on movies are more likely to have similar tastes
than those who disagree. The free parameter α determines
the importance of agreement, with α= 0 implying that
disagreement in the ratings are irrelevant, while ratings
that agree become dominant as α→∞.
To test our prediction scheme, we select a subset of the

full NetFlix dataset comprised of N users and 6000 movies
(the parameters are listed in table 1). For varying values
of N and α, we choose k users from the data set in order
to test the efficacy of our approach (k is shown in the
third column in table 1). For each node i selected, we
iteratively perform the followings steps for each movie l
user i has seen: I) remove the rating user i gave to movie l
from the network, II) compute the GENs for this modified
network using (2), and III) compute the predicted rating

user i gives to movie l using (5) as a function of β, p
(l)
i (β).

The average improvement as a function of β is determined

from the RMSD ρ2i (β) =
∑
l[r
(l)
i − p(l)i ]2/ni, where ni is the

number of movies that user i has seen.
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Increasing nmin

Fig. 4: (Colour on-line) Percent improvement at β = 2
compared to β = 0 (κβ=2) as a function of nmin. See table 1
for parameters. Case 1 is shown as open circles, case 2 as filled
circles, case 3 as open squares, and case 4 as filled squares. Error
bars (using the standard deviation of the mean) are shown only
for case 4, with the errors for the other cases being smaller.
Upper inset shows 〈ρ(β)〉 as a function of β for varying nmin
for case 3 (higher curves correspond to smaller nmin). The
lower inset shows the fraction of users satisfying n� nmin for
case 3.

The RMSD ρi depends strongly on the number of
movies (ni) that the user has seen, as is shown by
computing the average RMSD restricted to users with
ni � nmin. In the upper inset of fig. 4, a pronounced mini-
mum in 〈ρ(β)〉 occurs for increasing nmin. The relative
improvement of (5) over an unweighted average (κβ =
1−〈ρ(β)〉/〈ρ(0)〉) is significant for nmin � 30 as seen in
the main panel of fig. 4. Restricting ourselves to users with
ni � 30 ratings gives an improvement of at least 3–5% at
β = 2 for all values of α and k examined (over 50% of the
nodes included in the average in all cases, see table 1).
For very well connected nodes (with nmin = 200 or about
8% of the nodes in each case, see the lower inset of fig. 4)
the average improvement is quite significant, ranging from
4.5–9.5%. The dependence of the improvement on nmin is
somewhat unsurprising, as the preferences of users who
have seen very few movies will be much more difficult to
predict. We also note that the negative improvement for
small nmin is due to the fact that the positions of the mini-
mum in 〈ρ(β)〉 saturate at β = 2 for large nmin, but are
far from this value for small nmin (upper inset of fig. 4).
In conclusion, our minimal measure of connectivity in

networks uses a simple weighted harmonic average and
leads to Generalized Erdös Numbers (GENs) which are
real-valued, asymmetric and take the global topology of
the network into account. They can be used to characterize
connectivity in a range of networks, as is demonstrated
by examining a variety of simple artificial networks and
the Erdös coauthorship network, and further can form

the basis for detailed probes of the structure of complex
networks. We show the latter by using GENs to construct
a ranking scheme for data sets from the Netflix prize,
where it outperforms a baseline predictor. The weighted
average in (5) can be implemented in other prediction
schemes, and a more complex form for the weighting
between nodes (incorporating temporal information, for
example) may give further improvements in predictions. A
natural next step of any measure of connectedness is to to
use it in additional applications: problems associated with
community detection in graphs, as well as the dynamics of
diffusion, epidemics and the behavior of dynamic networks
with time-dependent edge weights beckon.
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