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We calculate the mean end-to-end distanceR of a self-avoiding polymer encapsulated in an
infinitely long cylinder with radiusD. A self-consistent perturbation theory is used to calculateR as
a function ofD for impenetrable hard walls and soft walls. In both cases,R obeys the predicted
scaling behavior in the limit of large and smallD. The crossover from the three-dimensional
behavior sD→`d to the fully stretched one-dimensional casesD→0d is nonmonotonic. The
minimum value ofR is found atD,0.46RF, whereRF is the Flory radius ofR at D→`. The results
for soft walls map onto the hard wall case with a larger cylinder radius. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1903923g

I. INTRODUCTION

Beginning with the observation by Kuhn1 that polymer
coils are asymmetric even in dilute solutions, a number of
studies have characterized the anisotropy of polymer chains.2

Polymer molecules in good solvents, modeled using the Ed-
wards model, are more anisotropic than Gaussian polymers
because the number of ellipsoidal conformations in self-
avoiding chains is far greater than spherical conformations.3

The anisotropy of polymers, which is relevant in a number of
applications involving polymer dynamics,4 becomes even
more pronounced in confined spaces. Nanoporessslits, cyl-
inders, and gelsd align the polymer coils and distort their
orientations, even when the characteristic confining volume
is relatively large compared to the polymer volume.5,6

Confinement-induced alterations in the shape of a polymer is
also relevant in biological applications. For example, a
newly synthesized polypeptide chain transits the ribosome
through a roughly cylindrical exit tunnel. The extension is
perhaps achieved by an effective stretching force7 fs

,akBT/D, whereT is the temperature,kB is Boltzmann’s
constant,D s.1 nmd is the radius of the exit tunnel, anda is
a constant. The magnitude offs that is appropriate to the
structure of the tunnel in the ribosome is between 4–10 pN,
depending ona, which is large enough to unfold long
stretches of proteins at low pulling speeds.8 Another example
is the encapsulation of a protein in the roughly cylindrical
cavity of the Escherichia colichaperonin GroEL.9 In this
case, substrate proteins are confined for a duration of time in
a nanopore, which can enhance unfolding rates. In a very
direct application, Tegenfeldtet al.10 have directly measured
the genomic length of DNA molecules by trapping them in
cylindrical nanochannels.

Motivated in part by the above observations, we con-
sider the behavior of a self-avoiding polymer of contour

length L, confined to the interior of a cylinder of radiusD.
We are primarily interested in how the mean end-to-end dis-
tanceR of the polymer changes as a function ofD and the
strength of the interaction between the cylinder and polymer.
Daoud and de Gennes11 obtained, using scaling arguments,R
when the interaction with the cylinder is purely repulsive. As
D→`, the cylinder has no effect on the mean end-to-end
distanceR, which implies thatR,RF, lNn, where l is ap-
proximately the size of one monomer,N is the number of
monomers, and the Flory exponentn=3/sd+2d.0.6 in d
=3 dimensions. AsD→0, the polymer is effectively con-
fined to d=1. In the confined environment, there are only
two relevant length scales,RF and D, so that asD /RF→0,
and using the scaling assumption, we can write11

R, RFfsRF/Dd. s1d

As RF /D→`, the chain is stretched in one dimension and
becomes rodlike, thus resembling a one-dimensional self-
avoiding walk. The scaling functionfsxd takes the form

fsxd , H1 x → 0

xm x → `,
J s2d

where the unknown exponentm is determined from the con-
dition R,N as x→`, i.e., nsm+1d=1, so thatm=2/3 and
thus11

R, lNS l

D
D2/3

. s3d

The prefactor in Eq.s3d, which is a complicated function of
D and the polymer-cavity interactions, is difficult to com-
pute. In this article, we calculateR for arbitrary values ofD
by adapting the Edwards–SinghsESd sRef. 12d uniform ex-
pansion method, which has been used in a number of
applications.5,12,13Note that, without the inclusion of an ex-
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cluded volume term, the system will converge on a one-
dimensional random walk, so thatR, lN1/2, with no depen-
dence onD.

The remainder of the paper is organized as follows: In
Sec. II, we calculateR for a polymer confined to a cylinder
with infinite polymer-cylinder repulsion. These calculations
are repeated for soft walls in Sec. III, and the differences
between the two systems are determined. Finally, the effect
of short ranged monomer-monomer interactions is briefly de-
scribed in Sec. IV.

II. HARD WALLS

A self-avoiding chain is described by the Edwards
Hamiltonian12 bHfr ssdg=3/2le0

Ldsṙ 2ssd+B2, where B2

=V0e0
Le0

Lds ds8ds3dfr ssd−r ss8dg and V0 is the strength of the
self-avoiding interaction. Following ES,12 we replace the
true Hamiltonian by a reference Gaussian,bH0

=3/2l1e0
Ldsṙ 2ssd, where the effective step lengthl1 is deter-

mined by the ES method. We writebH=bH0+B1+B2,
where B1=3s1/l −1/l1d /2e0

Ldsṙ 2ssd. We find5,12 R2

;kR2l=edr 0 dr LeDfr ssdgsr L−r 0d2 exp(−bHfr ssdg) , kR2l0

−D+OsBi
2d, with

D = skR2B1l0 − kR2l0kB1l0d + skR2B2l0 − kR2l0kB2l0d,

s4d

and wherek¯l0 denotes an average over the reference
HamiltonianbH0. The optimal value ofl1 is chosen to sat-
isfy kR2l;kR2l0, which is possible only ifD;0. The con-
dition D=0 results in a complicated self-consistent equation
for l1. For the unconfined case, ES showed12 that higher or-
der terms in theBi’s merely alter the numerical coefficient of
l1 without affecting the Flory scaling laws. Thus, higher or-
der terms will be ignored in this paper. For the remainder of
the paper, all averages are taken with respect to the reference
Hamiltonian H0, so the subscripts on the brackets will be
dropped. We also defineSi ;kR2 Bil−kR2lkBil.

To calculateD, the Green’s function for the reference
Hamiltonian in a cylinder needs to be determined. Because
of the infinitely repulsive polymer-cylinder interaction the
Green’s function vanishes at the walls of the cylinder. The
resulting Green’s function obeys the Heat Equation in an
infinite cylinder, and the solution that satisfies the appropri-
ate boundary conditions, in terms of the cylindrical coordi-
natesr =sr ,f ,zd, is14

Gsr 0,r L;Ld =
Gzsz0,zLd

pD2 o
m=−`

`

o
n=0

`

cosmsfL − f0d

3
Jmsamnr0/Dd

Jm+1samnd
JmsamnrL/Dd

Jm+1samnd
e−amn

2 l1L/6D2
, s5d

where Gzsz0,zLd=ez0

zLDszdexps−3/2l1e0
Ldsż2d, Jmsxd is the

mth Bessel function, andamn is its nth positive root. Using
Eq. s5d, kR2l becomes

kR2l = 1
3Ll1 +

2D2

N o
n

3H 1

a0n
2 S1 −

4

a0n
2 De−a0n

2 l1L/6D2
−

1

a1n
2 e−a1n

2 l1L/6D2J
; 1

3Ll1 + kR2
2l, s6d

whereN=onexps−a0n
2 l1L /6D2d /a0n

2 . The transverse term of
the end-to-end distance,kR2

2l=kx2l+ky2l, scales askR2
2l

,D2 as D→0, implying that kz2l= l1L /3,D2/3 as D→0
fsee Eq.s3dg.

Taking a derivative of R2 gives12 S1= l1
2s1/l

−1/l1ddsR2d /dl1, and we find

S1 = 1
3Ll1

2S1

l
−

1

l1
DH1 −

1

No
n
FS1 −

4

a0n
2 −

kR2
2l

2D2D
3e−a0n

2 l1L/6D2
− e−a1n

2 l1L/6D2GJ . s7d

The second term in Eq.s4d is more complicated, but is
simplified by splitting the averages into confined and uncon-
fined terms. The unconfinedz averages are calculated by
completing the square in the exponent after Fourier trans-
forming dfzss8d−zss9dg.5,12 To computeS2 we define

Iksm,hnijd =E
0

1

dx x
Jksakn1

xd

Jk+1sakn1
d

Jksakn3
xd

Jk+1sakn3
d

Jm
2 samn2

xd

Jm+1
2 samn2

d
and

s8d

Eksm,hnij;t,t8d = Iksm,hnijdexpS−
l1L

6D2fakn1
t, + amn2

ut − t8u

+ akm3
s1 − t.dgD , s9d

where the “time ordering” variables,t, and t., are

t, = H t t ø t8

t8 t . t8,
J t. = Ht8 t ø t8

t t . t8
J s10d

with t=s8 /L and t8=s9 /L. In terms of these quantities, we
find

S2 =
2

NÎ 6L3

p3l1
o

m,hnij
E

0

1E
0

1

dt dt8
V0

Îut − t8u

3H−
E1sm,hnij;t,t8d

a1n1
a1n3

+
E0sm,hnij;t,t8d

a0n1
a0n3

3S1 −
2

a0n1

2 −
2

a0n3

2 −
kR2

2l
2D2 −

l1L

6D2ut − t8uDJ . s11d

In the limit D→`, Eq. s11d converges to the Edwards–Singh
self-consistent equation for the unconfined case,12 i.e.

S1 + S2 , l1
2LS1

l
−

1

l1
D − 2V0Î 6L3

p3l1
= 0. s12d

Thus, for large D, l1,s24V0
2l2L /p3d1/5 and R,RF

,s24/p3d1/10sV0ld1/5L3/5. As D→0, the ground state domi-
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nates in Eq.s5d. Thus, only thesm,hnijd=s0,0,0,0d;0 term
in Eq. s5d makes an appreciable contribution. In this case, we
find that

S1 + S2 , 1
3Ll1

2S1

l
−

1

l1
D −

16V0

15D2Î lL5

6p3I0s0d = 0. s13d

For small cylinder radius, Eq. s13d gives l1
,0.393sV0l /D

2d2/3L and R,0.627sV0l /D
2d1/3L, after I0s0d

is evaluated. As predicted in Eq.s3d, R has the proper scaling
from ND−s2/3d. Thus, in both theD→0 andD→` limits, the
expected scaling form is recovered, including the predicted
dependence ofR on D.

To determine the behavior ofR for intermediate values
of the cylinder radius, the self-consistent equationsD=0d can
be numerically solved forl1 as a function ofD, andR deter-
mined usingR=sLl1d1/2. Figure 1 showsR/RF for different
values ofL and V0. All of the plots are virtually identical,
which implies that the only difference between the systems is
the numerical value ofRF. As D /RF exceeds unity,R→RF

from below sFig. 1d. In accordance with the scaling predic-
tions, R/RF increases substantially even under moderate
squeezingsD /RF,0.2d. Surprisingly, the crossover from the
coil state sD /RF@1d to the stretched statesD /RF!1d is
nonmonotonic. There is a minimum inR,0.75RF at Dmin

,0.46RF sFig. 1d. This behavior, which has been previously
observed for polymers confined to a slit,5,6 is due to
confinement-induced anisotropy in the polymer conforma-
tions. Monte Carlo simulations by van Villiet and ten Brinke6

show thatRmin,0.8RF in a slit, which shows that confine-
ment in a cylinder squeezes the polymer somewhat more
than in a slit.

III. SOFT WALLS

In real systems, the interaction between the polymer and
the cylinder is not infinitely hard. It is therefore important to
calculateR in the case of soft walls. By soft walls, we mean
that the interaction between the polymer and the wall can be
represented by a repulsive, nonhard sphere potential, which
in the corresponding heat conduction problem requires radia-
tive boundary conditions. In the hard wall case,Gsr 8 ,r 0;Ld
=Gsr L ,r 8 ;Ld=0, with r 8=sD ,f ,zd. If the walls are soft then
the Green’s function does not vanish at the boundaries, but

satisfies15 ]GSsr ,r 8 ;Ld / u]rur=D=C0G
Ssr ,r 8 ;Ld, where C0

=` corresponds to the hard wall case. The Green’s function
in this case is

GSsr L,r 0;Ld =
Gz

pD2 o
m=−`

`

o
n

bmn
2

C2gmn
2

3cosmsfL − f0d
Jmsr0bmn/Dd

Jmsbmnd

3
JmsrLbmn/Dd

Jmsbmnd
e−bmn

2 l1L/6D2
, s14d

where we have defined the dimensionless parametersC
=DC0, gmn=1+sbmn

2 −m2d /C2, and where thebmn’s are the
positive roots of

bmnJm8 sbmnd + CJmsbmnd = 0. s15d

WhenC@1, bmn,amns1−1/Cd, so thatGS,s1−1/CdG by
a Taylor expansion. It can then be shown that, for large C,
Rsoft,s1+4/5CdRhard. As D→`, the results forR for the
hard and soft walls coincide.

For finite C, the bmn’s cannot be easily related to the
amn’s, so we define

NS= o
n

e−b0n
2 l1L/6D2

b0n
2 g0n

2

s16d

kR̄2
2l =

2D2

NS
o
n

e−b0n
2 l1L/6D2

b0n
2 g0n

2

3S1 +
2

C
−

4

b0n
2 D −

e−b1n
2 l1L/6D2

b1n
2 g1n

2 S1 +
1

C
D2

.

The B1 averages are easily computed by taking a derivative
of Eq. s16d, as in Eq.s7d. The B2 averages are tedious to
calculate, but give

S2 =
2

NS

Î 6L3

p3l1
o

m,hnij

bmn2

2

C4gmn2

2 E
0

1E
0

1

dt dt8
V0

Îut − t8u

3H−
Ē1sm,hnij;t,t8d

g1n1

2 g1n3

2 S1 +
1

C
D2

+
Ē0sm,hnij;t,t8d

g0n1

2 g0n3

2

3S1 +
2

C
−

2

b0n1

2 −
2

b0n3

2 −
kR̄2

2l
2D2 −

l1L

6D2ut − t8uDJ ,

s17d

where Ēksm,hnij ; t ,t8d is identical toEksm,hnij ; t ,t8d in Eq.

s9d, except thatamn→bmn and Iksm,hnijd→ Ī ksm,hnijd, with

Ī ksm,hnijd =E
0

1

dx x
Jksbkn1

xd

Jksbkn1
d

Jksbkn3
xd

Jksbkn3
d

Jm
2 sbmn2

xd

Jm
2 sbmn2

d
. s18d

As C→0, it can be shown that Eq.s15d givesb00,Î2C. In
the smallD limit, for a finite C0, we findS1 converges to the
first term in Eq.s13d, andS2,−8V0/15D2sl1L /6p3d1/2, im-
plying l1,0.230slV0/D2d2/3L and R,0.526sV0l /D

2d1/3L.

FIG. 1. Plots ofR/RF as a function ofD /RF, for various values ofL andV0.
The lowest curve corresponds toL / l =1000 andV0/ l =0.1 and the uppermost
curve hasL / l =1000 andV0/ l =0.5. There are two coincident curves in the
middle, one withL / l =1000 andV0/ l =0.1, the other withL / l =5000 and
V0/ l =0.2. The minimum for all curves occur nearDmin,0.46RF, with
Rmin,0.75RF.
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The scaling laws are unchanged by the softness of the walls;
only the numerical coefficients are altered.

The numerical solution forR as a function ofD with
varyingC0 shows thatRmin,0.75RF as in the hard wall case
sFig. 2d. However, asC0 decreases,Dmin decreases from
,0.46RF to ,0.32RF sFig. 2d. Thus, the soft wall behaves as
a hard wall with a somewhat larger effective radius,Deff

=D+dD. For DùDmin, a shift of dD,Dmins`d−DminsC0d
causesR to coincide with the end-to-end distance in the hard
wall case. If we account for this shift, we find that the values
of R for both cases differ at most by 5% forDùDmin. Be-
cause the scaling laws change drastically for smallD, a
simple shift inD is not sufficient to reduceR to the value for
hard walls forD,Dmin.

IV. EFFECT OF MONOMER-MONOMER
INTERACTIONS ON R

Typically, there are interactions between monomers be-
sides the universally present excluded volume interactions.
As long as these interactions are short ranged, the potential
between monomerss1 and s2 can be modeled as
B3=−vdfr ss2d−r ss1dg, where Ds=s2−s1.0. The insertion
of this potential into Eq. s4d leads to V0→V0−vdss8
−s1ddss9−s2d=V0−vdst− t1ddst8− t2d /L2 in Eq. s11d, so that
for infinitely hard walls,S3,vs3/8p3l1Dsd1/2 asD→`, and
S3,2vI0s0d /D2 sl1Ds/6p3d1/2 as D→0. Inclusion of
monomer-monomer interactions for a polymer confined to
soft walls yields the same scaling behavior in both limits, the
only change being the numerical coefficients. Comparison of
these scaling laws with Eqs.s12d ands13d shows that there is
an effective shift in the strength of repulsion due to a mono-
mer attraction, withDV0,−vDs1/2L−5/2 for small D, and
DV0,−vDs−1/2L−3/2 for largeD. In both regimes, the effect
of S3 is insignificant compared toS2 for very long chains,
provided thatv,V0. Short-ranged interactions between all
monomers can be computed by assuming that the potential is
pairwise additive. In this case, given a distribution of
interactions between theith and j th monomersvi j we find
that V0→V0−oi,jvi jd

s3dfr ssid−r ssjdg, or V0→V0−edt dt8
V1st ,t8ddfr std−r st8dg, whereV1st ,t8d=vss8 ,s9d /L2. Because
S3 only produces a shift inV0, the addition of this potential
will simply reproduce the results in Fig. 1 for intermediate
values ofD. Thus, we expect the predicted scaling form to be

unaltered for a heteropolymer confined to a cylinder, pro-
vided the effective intramolecular interaction is not strong
enough to induce chain collapse.

V. CONCLUSIONS

Inspired by a number of physical situations, we have
calculated the dependence of the size of a polymer molecule
confined to a cylinder using the Edwards–Singh uniform ex-
pansion method. The theory presented here provides an ap-
proximate formula for the dependence of the end-to-end dis-
tanceR for arbitrary values of the cylinder radiusD. The
major conclusions of the study are as follows.

sid The theory yields, in the appropriate limits, the pre-
dicted scaling laws forR as a function ofD. In particular, the
expected scaling function is obtained in theD→0 limit. The
advantage of the theory is that the numerical factors that are
difficult to obtain using scaling arguments12 have been ex-
plicitly calculated. This allows for a calculation ofR for any
value ofD.

sii d We have calculatedR by numerically solving the
self-consistent equation. Surprisingly, we found the cross-
over from the three-dimensional behaviorsD→` limit d and
the fully stretched limitsD→0 cased is nonmonotonic. The
minimum value ofR,0.75RF is found atD,0.46RF when
the wall is infinitely hard. This is because the wall induces an
orienting field that enhances the anisotropy of the polymer.
This effect is greater for an encapsulated polymer in a cylin-
der compared to slit confinement.

siii d A direct calculation shows that asymptotic scaling
laws are the same for both hard and soft walls. Any soft wall
can be replaced by an equivalent hard wall with a larger
cylinder radius, provided the wall-cylinder interaction re-
mains short ranged.
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